On the Numerical Violation of the Mathematical Constraint when using Unit Quaternions as Orientation Parametrization in Multibody Systems
Publikation, 2016
Outline
K. Nachbagauer, K. Sherif, W. Steiner - On the Numerical Violation of the Mathematical Constraint when using Unit Quaternions as Orientation Parametrization in Multibody Systems - Proceedings of the 4th Joint International Conference on Multibody System Dynamics, Montreal, Kanada, 2016
Abstract
Multibody systems composed by interconnected bodies incorporate constraints, either coming from the explicit
formulation of kinematic joints or resulting from the parametrization of the orientation of the bodies by dependent
coordinates, e.g., Euler parameters as a special choice of quaternions. Since the four Euler parameters are over-determined for the three degrees of freedom for the rotation of a body, a mathematical
constraint has to be satisfied. This means that the unit length constraint is
enforced explicitly by means of an algebraic constraint. The problem of numerical violation of such mathematical
constraints concerning Euler parameterization is discussed within the present work.
Cookies helfen uns bei der Bereitstellung unserer Dienste. Durch die Nutzung unserer Dienste erklären Sie sich damit einverstanden, dass wir Cookies setzen.