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Abstract. In the era of commonly available problem-solving tools for, it
is especially important to choose the best available method. We use Local
Optima Network analysis and machine learning to select appropriate
algorithm on the instance-to-instance basis. The preliminary results show
that such method can be successfully applied for sufficiently distinct
instances and algorithms.
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1 Introduction

NP-complete problems are among the most researched problems in operational
research. Since optimal solutions are usually unobtainable for the real-world
instances, heuristic algorithms are commonly used. There is a wide variety of
metaheuristic algorithms, successfully employed to solve multiple optimization
problems such as: Tabu Search [4, 3, 2], Genetic Algorithm [8] or Simulated An-
nealing [5]. However, there is no agreement on which algorithm is the best for
each task. For example, for the Flexible Job Shop Scheduling Problem, review [6]
describes at least 14 categories of optimization algorithms. Within each category,
there are multiple specific variations. For commonly used Genetic Algorithm and
the Travelling Salesman Problem (TSP), in survey [20], there is a number of
techniques presented.

The mentioned challenge is known in literature as the Algorithm Selection
Problem (ASP). In order to make an informed choice, one must obtain as much
information about the task being solved, as practically possible. To provide the



data describing the instances, Fitness Landscape (FL) analysis (FLA) is usually
employed. The gathered data is usually utilized to solve ASP, using machine
learning techniques or even simple methods based on correlation. A compre-
hensive survey over ASP can be found in [10]. In [14], ASP was researched on
the example of the Quadratic Assignment Problem. Two different metaheuristic
algorithms were considered: Robust Taboo Search and Variable Neighborhood
Search. Several well-known classification methods were used to determine the
best algorithm for each tested instance, among others: one variable rule learner
(OneR), sequential minimal optimization (SMO) of a support vector machine
and Gaussian processes (GProc) and linear regression (LR). The features used
were chosen from the set of 34 different FL measures. Results were promising
with up to 80% of correctly classified instances. Unfortunately, the time required
for measuring the features was longer then the optimization algorithm runs, neg-
atively affecting the practicality of the proposed solution. The ASP for QAP was
also tackled by Smith-Miles [16], where a meta-learning framework based on sim-
ple feed forward neural networks [15] and self-organizing feature maps was used
to analyze (and as a result—predict with up to 94% accuracy) the performance
of 3 metaheuristic algorithms. In [9], 6 metaheuristics were tested for the protein
structure prediction problem. Correlation was used to identify the relationship
between several FL measures and performance of the algorithms.

While the mentioned results suggest that FL analysis is a potent tool for
solving ASP, due to an enormous amount of data, it is hard to process and share
even a sampled FL between researchers. The concept of Local Optima Networks
[13] is a promising solution to this problem. LON is a network consisting of
locally optimal solutions (nodes) and probabilities of navigating a search pro-
cess between them (edges). The LON model provides a way to compress the
information about the search space and was successfully applied to gathering
the data over various optimization problems, such as: TSP [12, 11], QAP [13,
18, 8], or NK [19, 13]. However, unlike FLA, LON analysis has not yet become a
recognized method of obtaining the instance features for ASP.

In this paper we investigate a viability of Local Optima Networks analysis in
the context of the Algorithm Selection Problem on the example of the Travelling
Salesman Problem. The solving algorithm were taken from the Google Optimiza-
tion Tools (OR-Tools); while test instances were both generated randomly and
chosen from TSPLib.

2 Basic concepts

2.1 Travelling Salesman Problem

In this paper, we use the symmetric TSP as a benchmark problem. Since TSP
is a widely known in optimization community, it will be only briefly described.
For more details, refer to [1]. In TSP, there is a set of cities M = {1, 2, . . . , n},
that must be visited by a travelling salesman. A solution is represented by a
permutation of cities from the set, constituting a tour. The tour must be closed
and pass through each city exactly once. In the researched variant of TSP, the



distance between each pair of cities is equal in both directions. The problem is
to find an order of visiting the cities, minimizing the length of the tour.

2.2 Fitness Landscape

A fitness landscape, as described in [17], is a triple {S, V, f}, where:

– S is a search space, consisting of all solutions. Since usually |S| grows ex-
ponentially with the problem size, for larger instances it is impossible to
analyze all the solutions. Therefore, in practical applications, various sam-
pling methods are utilized.

– V is a neighborhood function, V : S → P(S). For any given solution s ∈ S,
function V assigns a set V (s), consisting of the neighbors of s.

– f is a fitness function, f : S → R. For any given solution s ∈ S, function f
assigns a real number evaluating a “quality” of the solution. In this paper,
we assume that the values of f are to be minimized.

2.3 Local Optima Network

LON is a network of nodes symbolizing problem solutions, connected by edges
with weights reflecting the probabilities of traversing between them, using given
search operator.

Nodes. The nodes are local optima, i.e. in their neighborhoods there are no
solutions with a lower value of the fitness function. Formally, a solution s ∈ S
is a local optimum if and only if ∀a ∈ V (s)

(
f(a) ≥ f(s)

)
. We use the classic

2-change neighborhood, also utilized in the tested metaheuristic algorithms. As
it is impossible to list all local optima of a reasonably big instance, we used a
sampling method, described in sec. 3.1. The set of LON nodes is denoted by
NLON .

Edges. There are at least two edge models for LON: basin-transition and escape
edges [13]. We selected escape edges, as it is easier to estimate their weights. A
directed edge (s, t) between local optima s and t exists only if t can be obtained by
applying a kick-operator on s, followed by a hill stepping algorithm (here—first-
improvement 2-opt). The weight of an edge is a number, reflecting the probability
of transition from s to t; and is estimated during sampling process. The set of
LON edges is denoted by ELON .

2.4 Algorithm Selection Problem

The Algorithm Selection Problem is a problem of selecting, from a given set,
the best algorithm on an instance-by-instance basis. In this paper, as a method
of comparing the algorithms, we measure the best result obtained after a fixed
calculation time.



Algorithm 1: Sampling LON nodes

Data : Inmax, the desired number of nodes;
Inatt, the number of node generation attempts;
a TSP instance

Result: NLON , the set of LON nodes

1 NLON ← {};
2 for i = 1, 2, . . . , Inmax do
3 for i = 1, 2, . . . , Inatt do
4 s← generateRandomSolution();
5 s← 2-opt(s);
6 if s is a local optimum then
7 if s /∈ NLON then
8 NLON ← NLON ∪ {s};
9 break

3 LON extraction and analysis

3.1 Sampling method

Due to a very large search space, the LON nodes and edges are obtained by a
sampling method, similar to the one described in [8]. However, the method was
slightly modified to fit a smaller computational budget.

The algorithm 1 describes the method of obtaining LON nodes. First, a
random solution s ∈ S is generated. Then, the solution is optimized by a greedy
descend algorithm—2-opt (a classic heuristic for TSP [7]). If the solution cannot
be further improved by the 2-opt, and is unique; it becomes a node. Otherwise,
another random solution is generated. Parameters Inmax and Inatt determine
the desired number of nodes in LON and the number of attempts to generate
each node. We decided to set Inmax = 1000 and Inatt = 10000. The values were
tuned so that the sets of the local minima of the smallest random instances are
thoroughly sampled. Following the trends in LON research, we also tested larger
values of Inmax = 10000 and Inatt = 10000 for the TSPLib as well as larger
random instances.

Algorithm 2 summarizes the sampling process of LON edges. For each node
s ∈ NLON in LON, a kick-move is applied to the related solution. The kick is
defined as k = 2 random 2-change moves performed one by one. The obtained
tour s′ is optimized by a first improvement descending algorithm (modified 2-opt,
the first-improvement strategy was chosen because it performed better in [8]). If
the solution can be found in NLON , the edge (s, s′) is added to the set of edges.
The process is repeated Ieatt-times for each node. We set Inmax = 100000 for
Inmax = 1000 and Inmax = 10000 for Inatt = 10000. Again, the numbers were
tuned for the smallest instances, where for any solution s ∈ S, the size of the



neighborhood is |V (s)|2 =, s ∈ S

|V (s)|2 =

(
1

2
(n− 2)(n− 1 + 1)

)2

=
1

4
n2(n− 2)

2
.

The weight of an edge (s, s′) is equal to the number of additions of (s, s′) to
ELON during sampling process. Therefore, the bigger the weight of an edge s, s′

is, the more probable the transition between solution s and s′ is.

Algorithm 2: Sampling LON edges

Data : NLON , the set of LON nodes;
Ieatt, the number of random kicks applied to each node;
a TSP instance

Result: ELON , the set of LON edges;
the weights of LON edges

1 ELON ← {};
2 set the weight of each possible edge to 0;
3 foreach s ∈ NLON do
4 for i = 1, 2, . . . , Ieatt do
5 s′ ← applyRandomKick(s);
6 s′ ← firstImprovement 2-opt(s′);
7 if s′ ∈ NLON then
8 ELON ← ELON ∪ {(s, s′)};
9 increase the weight of {(s, s′)} by 1;

3.2 Measures

We measured various LON parameters, including:

edgeToNode — the edge to node ratio, edgeToNode = |ELON |
|NLON | ,

escRate — the average number of kick moves required to leave a local optimum,
numSubSinks — the number of subsinks. Solution s ∈ NLON is a subsink if

and only if it has no outgoing edges to the solutions with the lower value of
the fitness function, ∀(s, i) ∈ ELON

(
f(i) ≥ f(s)

)
,

distLO — the average distance form each node to the node s∗ with the lowest
value of the fitness function. The distance between any two nodes is defined
as reciprocal of the corresponding edge weight. The nodes not connected to
s∗ are omitted.

conRel — the number of nodes connected to s∗ to the number of nodes not
connected to s∗ ratio,

assortativity — the measure of preference for LON nodes to be connected with
similar nodes (nodes with similar number of in-going or out-going nodes,
values of fitness function),



clustering — global clustering coefficient, calculated with the grap-tools

package for Python.

4 Experiments

4.1 Empirical setting

Test instances. The most popular test instances for TSP are gahtered in
TSPLIB3. We chose 19 relatively small ones: eil51, berlin52, st70, pr76,
eil76, rat99, rd100, kroA100, kroB100, kroC100, kroD100, kroE100, eil101,
lin105, pr107, pr124, ch130, pr136, pr144, with the sizes varying from from
51 to 176 cities. To further diversify the dataset, we generated random instances
consisting of 30, 50 and 100 uniformly distributed cities (rnd30, rnd50, rnd100);
30 for each instance size.

Algorithms. We chose a commonly available set of metaheuristic algorithms,
Google Optimization Tools (OR-Tools)4. OR-Tools allowed the use of various
algorithms without implementation concerns. Moreover, the toolbox provides
automatic mode, which is supposed to choose the appropriate algorithm for a
given task. The initial idea was to compare the selection mechanism, to the
one proposed in this paper. For each problem instance, we used the follow-
ing search options, with default settings: Automatic (Auto), Greedy Descent
(GD), Guided Local Search (GLS, most efficient for solving vehicle routing
problems according to OR-Tools documentation), Simulated Annealing (SA),
Tabu search (TS), Objective Tabu Search (OTS).

To evaluate the algorithms, we launched each one for 1 second for each in-
stance (the short calculation time is due to the small size of the problems). We
calculated the relative quality of the obtained solutions from equation

∆(s) =
f(s)− f(s∗)

f(s∗)
· 100%,

where s∗ is the best known solution for the instance and f is the fitness function
(see Table 1).

The results eliminated the possibility of comparing our method of solving
ASP to the solution from OR-Tools. Automatic mode yield nearly the same
results as GD, one of the worst performing algorithms (no differences between
Auto and GD in Table 1). Moreover, GLS algorithm provided the best results
for the vast majority of instances. Thus, the task of choosing the best algorithm
for TSP from those available in OR-Tools is trivial.

This fact, however, does not eliminate the possibility of using LON analysis to
select the appropriate algorithm from a smaller algorithm portfolio. For the ASP
to be meaningful, the portfolio should contain complementary solving methods.

3 https://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
4 https://developers.google.com/optimization/



Table 1. Average relative quality of the solutions obtained by the algorithms.

Instances
Average ∆ [%]

Auto GD GLS SA TS OTS

rnd30 2,525 2,525 0,000 2,513 0,152 0,206
rnd30,50,100 2,304 2,304 0,093 2,408 0,532 0,381
TSPLib 3,527 3,527 0,172 3,458 2,822 1,063

Table 2. Pairwaise comparison of the algorithms performance.

Dataset Result
Algorithms

1v211v3 1v4 1v5 1v6 2v3 2v4 2v5 2v6 3v4 3v5 3v6 4v5 4v6 5v6

T
S
P

li
b 1st won 0 0 4 4 3 0 4 4 3 10 9 7 1 1 1

draw 19 5 7 6 5 5 7 6 5 2 2 2 15 10 11
2nd won 0 14 8 9 11 14 8 9 11 6 7 9 2 8 7

rn
d

1st won 0 0 34 19 15 0 34 19 15 69 48 36 1 1 8
draw 90 25 28 27 15 25 28 27 15 14 32 34 59 30 43

2nd won 0 65 28 44 60 65 28 44 60 7 10 20 30 59 39

1-Auto, 2-GD, 3-GLS, 4-SA, 5-TS, 6-OTS. Results suggesting that the algorithms
are complementary bold. 1v2 column contains the comparison of the best results of
algorithms 1 and 2.

Let us consider a pair of algorithms A and B. The number of instances in which
algorithm A outperformed B is denoted by w(A,B), while the number of draws,
by d(A,B). We assumed that A and B are complementary, when w(B) ≥ w(A) ≥
0.5w(B) or w(A) ≥ w(B) ≥ 0.5w(A) and d(A,B) ≤ w(A) + w(B). The results
the described pairwise comparison is presented in Table 2.

4.2 Local Optima Networks

Local Optima Networks were generated with the method described in sec. 3.1.
For the random instances with n = 30 and n = 50 cities, we sampled LONs with
Inmax = 1000 nodes and Ieatt = 10000 edge-creating attempts. For rnd100 and
for TSPLib instances, the sampling parameters were set for Inmax = 10000 and
Ieatt = 10000.

One can define many different measures, capturing specific aspects of LON.
However, some measures are correlated, causing the need for a feature selection.
To eliminate redundant data, we calculated Spearman correlation coefficients
for each pair of LON measures (listed in sec. 3.2) and each test instance. The
correlation matrix is shown in Figure 1.

The values of assortativity measures correlates with each other in a signif-
icant way, therefore only one is used for further analysis. There is also a clear
correlation between the size of the instance n and most of the other measures.
This is due to the lesser variation in the value of the measures among instances
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Fig. 1. Correlation matrix for all LON measures. Lower triangle: relationship scatter-
plots. Diagonal: histograms. Upper triangle: Spearman correlation coefficient. P-values
are indicated by asterisks: *** for p < 0.001, ** for p < 0.01 and * for p < 0.1.

of the same size. Such phenomenon is probably caused by the bias induced by
the LON sampling method. For example, an average edgeToNode ratio for ran-
dom instances with n = 30 and 1000-node LON is 282, while for n = 50—30.
For n = 100 and 1000 nodes, almost no edges (that are not self-loops) are
present. Increasing the size of LON to 10000 sampled nodes yields in average
edgeToNode = 2.6; while the intuition suggests, that with the increase of n,
edgeToNode should also increase. The problem was also signalized e.g. in [12],
where the influence of sampling effort on the values of measures is shown. Unfor-
tunately, there is no commonly accepted sampling method so far, that we know
of, to avoid such an effect.



4.3 Algorithm Selection Problem for TSP

As the ASP algorithm portfolio, we took pairs of complementary algorithms
from Table 2. For each pair of algorithms A-B, the problem was to predict if
algorithm A outperforms B, B outperforms A, or if they will provide the same
results; using features from sec. 3.2. We chose classifiers from WEKA5 for this
task. The software allows an easy use of many machine learning classifiers, from
the simple ones, like NaiveBayes or DecisionStump, to more the sophisticated
MultilayerPerceptron or RandomForest. As a comparison baseline, zeroR clas-
sifier was used—a simple method which always predicts the majority category
class (as a side effect, it also indicates how unbalanced the dataset is). The
percentage of correctly predicted instances was measured.

For TSPLib instances, and the algorithm pairs: GLS-SA and GLS-TS, the
differences between the prediction performances of zeroR and other classifiers
were lower then 5%. However, for the GD (or Auto) and SA algorithms, clas-
sifier scored 57.9% correct predictions, while zeroR scored only 42.1%. For the
GLS-OTS pair, zeroR was outperformed by 21.1%, 57.9% to 36.8%. Also worth
mentioning are the predictions for the SA-OTS and TS-OTS pairs: 73.7% and
68.4% respectively, while zeroR scored 52.6% and 57.9%. Unfortunately, these
pairs of algorithms were not complementary. The classifier was only able to
determine whether the algorithms would give the same result or whether the
better-performing one would win. Randomly generated instances proved to be
much harder to be classified. No classifier outperformed zeroR by more then 5%
for each algorithms pair. Probably the differences between instances were too
subtle to be captured by a simple LON sampling method used in this paper.

5 Conclusions

We presented a method of solving the Algorithm Selection Problem for the Trav-
elling Salesman Problem. As our main contribution, we investigated using Local
Optima Network analysis to provide feature extraction of the problem instances.
The initial results suggests, that such method can be successfully applied, pro-
vided well diversified instances and complementary solving algorithms. Unfortu-
nately, the computation time required for sampling LON is still longer than that
of the solving the instance itself. An interesting observation was the poor qual-
ity of the automatic algorithm selection mechanism provided by the researched
OR-Library, leaving much room for improvement.

In further studies, we plan to investigate the relationship between the LON
sampling method and the values of LON measures. Due to the intense computa-
tional demand, this part of LON analysis, in our opinion, requires more attention
from the research community.

5 https://www.cs.waikato.ac.nz/~ml/weka/
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