
PERFORMANCE OF INDUSTRIAL SENSOR DATA PERSISTENCE IN DATA VAULT

Florian Bachinger(a), Jan Zenisek(b), Lukas Kammerer(c), Martin Stimpfl(d), Gabriel Kronberger(e)

(a),(c),(e) Josef Ressel Centre for Symbolic Regression, School of Informatics, Communications and Media, University of

Applied Sciences Upper Austria, Hagenberg
(b) Heuristic and Evolutionary Algorithms Laboratory, University of Applied Sciences Upper Austria, Hagenberg

(d) Miba AG, Dr. Mitterbauer Str. 3, Postfach 3, A-4663 Laakirchen, Austria
(a) florian.bachinger@fh-hagenberg.at, (b) jan.zenisek@fh-hagenberg.at, (c) lukas.kammerer@fh-hagenberg.at,

(d) martin.stimpfl@miba.com, (e) gabriel.kronberger@fh-hagenberg.at

ABSTRACT

Today manufacturing companies are facing important

challenges from the market in terms of flexibility, ever

growing product mixes, small lot sizes, high competition,

etc. To meet these market conditions, digitalization and

the use of data are offering a viable toolset considering

the advances in the field throughout the last couple of

years.

The increasing use of sensor technology and the need for

interconnecting data from different departments in smart

production leads to a surge of recorded data. Persistence

and integration of heterogeneous data, generated in a

variety of software systems, is a key factor to gain value

from data and its analysis. High flexibility in regards to

the model is required to accommodate the data. Hence,

application of the data vault modelling approach is a

fitting candidate to design a data warehouse model. In

this paper we present a data vault model for factory

sensor data. We analyze the performance of the data

warehouse in regards to bulk load of data and common

analytic queries.

Keywords: industrial data warehouse, data vault, sensor

data persistence, performance analysis

1. INTRODUCTION

Industry 4.0 and the Internet of Things (IoT) accelerate

Digitalization of today’s production plants. Modern

production machines are now equipped with a variety of

sensors measuring operational data of the machine and

the product. In combination with data from material

acquisition or quality assurance departments industrial

companies aim to identify key input factors of the

production process in a smart factory (Bauernhansl, ten

Hompel, 2014). Persisting and connecting this data

enables optimization of the process parameters and lays

the foundation for applying new strategies such as

Predictive Maintenance (PdM).

With the increasing volume and diversity of data, new

challenges in data storage arise. Data is required to be

stored in a structured and performant manner connected

in a centralized data warehouse (DWH). The DWH

enables the integration of various data sources and serves

as data source for reporting, knowledge bases or PdM

systems (Inmon, 2002). The data-model contained by the

database management system (DBMS) must be able to

handle insertion of data at a high bandwidth, while still

providing fast analytic query-results based on the

existing data.

Additionally, the model has to be flexible in order to

easily incorporate changes in the structure of the

operational data and it must stay well-defined to support

query languages. The data vault modelling approach by

Linstedt (2002) describes a system well suited for this

scenario. Hultgren (2012) defines key indicators for

determining if the application of the data vault modelling

approach is a good fit.

1. Integration of multiple heterogeneous data

sources

2. Accurate and complete time-slice history

including audit information for full

replicability

3. Frequent addition of new sources or change of

existing ones

4. Commitment of the organization to incorporate

an Enterprise Data Warehouse (EDW)

With all these indicators applicable, the data vault

modelling approach fits the scenario at hand. In this

paper, we investigate how the data vault model designed

for this scenario scales and how reoccurring operations

(bulk load, analytic queries) perform over increasing data

volume. This should provide insight if the data vault

modelling approach is a good fit for persisting sensor

data of today’s smart factories.

Related work in this area includes van der Veen et al.,

(2012) who compared sensor data storage performance

of relational SQL databases with NoSQL DBMS systems

in physical and virtualized environments. Collins and

Shibley (2014) investigated applicability of high quality

data modelling (HQDM), which define desirable

properties of a DWH. They showed that the application

of HQDM principles, as defined by West (2011), is well

supported by the DV modelling approach.

This paper differs from previous work in that it focuses

on applying the data vault modelling approach for sensor

data storage and investigates the model’s performance

behavior over a growing data volume.

mailto:florian.bachinger@fh-hagenberg.at
mailto:jan.zenisek@fh-hagenberg.at
mailto:lukas.kammerer@fh-hagenberg.at
mailto:martin.stimpfl@miba.com
mailto:gabriel.kronberger@fh-hagenberg.at

Figure 1: The devised data vault model for channel oriented storage of production machine sensor data

This paper is organized as follows. First, the data vault

modelling approach is described in Section 2. Next, the

data vault model used for the experiments and the kind

of data to be stored in the DWH is defined in Section 3,

with focus on how the data in this scenario differs from

simple high resolution sensor data. Section 4 describes

the performance-test setup and the results. Finally,

Section 5 will draw conclusions and describe future work

in this area.

2. DATA VAULT

The data vault (DV) modelling approach was defined by

Linstedt (2002) and was since then further evolved into

data vault 2.0 (Inmon & Linstedt, 2014; Linstedt &

Olschimke, 2015). DV supports the requirements of next

generation data warehouses (DWH 2.0), as defined by

Inmon et al. (2010). DV differs significantly from 3rd

Normal Form (3NF) model first defined by Codd (1970),

which is the widest spread modelling approach. However

DV is still compliant with the technical restrictions of a

relational database management system (RDBMS)

consisting of tables and their relationships only.

2.1. Table types

Each RDBMS table represents either a hub (H), link (L)

or satellite (S) entity, which are used to store and model

business concepts and their relationships. These three

core components of DV are covered briefly in the next

subsections. The description is based on the model

depicted in Figure 1 where the different table types are

also marked in different colors and with the type

abbreviation as prefix.

2.1.1. Hub

Each logical business concept modelled by DV is

represented by a hub entity. Besides the audit attributes

(covered in Section 2.2), a hub only stores the business

key used to uniquely identify a single instance of the

business concept.

Sensor channels (as stored in the table H_Channel) for

instance are identified by their channel-name and the

type of data they store (e.g. the combination of name

‘surface temperature’ and data type ‘real-number’

identifies a specific channel). Only on first occurrence of

this key-combination a new H_Channel hub entry is

created, no duplicated hub entries are allowed. As this

example illustrates, the business key can also be a

composite key. Per definition of data vault 2.0 the

business key is combined and subsequently reduced by a

hash function like MD5 to a single identifier (128 bit

sized, in the case of MD5). This calculated hash is stored

as the primary key of the hub entity alongside the

business key. The business key can still be used for

searching by queries but for references only the

calculated hash may be used.

2.1.2. Link

Link entities represent relationships between business

concepts and logically connect an arbitrary number of

hubs or other link entities. The link entity therefore stores

the primary hash keys of all connected hub instances.

This allows representation of n:m cardinality for any

business relationship in data vault, effectively providing

important flexibility to incorporate cardinality change in

the logical model. A link’s business key consists of the

sum of all foreign key hash references which are

subsequently combined and hashed to create the link’s

primary key.

Each link entry and its foreign key values represent an

existing relationship between logical business concepts.

To represent invalid relationships, the link entity stores

an end-date to mark from when on the relationship is no

longer existent. This is necessary since deletion of data,

in any table type, is not permitted.

As depicted in Figure 1 for instance an entry in

L_Run_Channel represents the assignment of a sensor

channel value to a specific run instance. The run and

channel hashed business keys are stored as foreign keys.

2.1.3. Satellite

Whereas hubs store only the key of a business concept,

the connected satellites store all associated descriptive

attributes. In the case of a sensor installed in a smart

factory plant, the sensor satellite might store the location

and a description. Each satellite stores the foreign key

reference to the hub or link instance and the specific date

and time when the current state of attributes was loaded,

making up the primary key of a satellite. Consequently,

each entry of a satellite is a time slice representing the

states of the business concept stored in the hub and its

connected satellites, with the latest entry representing the

current state. Following the DV modelling approach the

entire attributes associated with a hub entity are not

necessarily stored in one single satellite table. Hultgren

(2012) encourages to separate satellites by:

1. Subject Area / Data Context

2. Rate of Change

3. Source System

4. Type of Data

This means that new satellites are created to store

additional attributes that are defined for a business entity

instead of adding new columns to existing tables.

Separating satellites by the above criteria reduces the

amount of sparse values and duplicated data on insertion

of a new time slice and therefore reduce the total memory

space.

In the case of the depicted model of Figure 1, the

satellites storing the sensor values are separated

according to the last 3 separation indicators.

2.2. Historical data and auditing

Generally speaking the DV allows only additive changes

to the model/schema and the data, to provide historically

correct and complete data views, with the only exception

to that rule being the link’s EndDate column which is

updated once a relationship is no longer valid. Each

change in the source data is persisted by insertion of a

new satellite data slice.

Apart from the business data the DV entities store audit

fields. The attributes LoadedBy, RecordSource and

LoadDate provide information about the data source

system and the import service. Whereas EditedBy and the

LoadDate provide information about the user, who

conducted the data change.

2.3. Unique features of the data vault approach

The utilization of hashed business keys as primary key

holds two main benefits in this scenario. First, it

improves join performance of analytical queries. Key

comparison is faster for a single primary key of fixed data

type and consistent length when compared to the join

performance of longer natural keys or utilization of

composite keys (Linstedt, 2014). Second, the hash value

of the business key can be calculated at load time of the

data. This improves performance of bulk inserts, since

hubs and satellites can be loaded parallel after foreign

key constraints are deactivated for the load process or not

present at all. In contrast, utilization of a bigint with auto

increment also creates keys of equal lengths, but the hub

entry has to be created beforehand in order to load the

satellites.

3. MODEL AND DATA QUANTITY

This section aims to provide a clearer picture of the kind

of data to be stored in the DV model. We describe a more

complex scenario where the data differs from a simple

log of recorded sensor data. A description of the origin

of the data will highlight the need for storing audit

information. Subsequently we describe why we chose to

model the data as shown in Figure 1 and how we

improved the performance of the model.

3.1. Data origin

Typically, a sensor records data in high frequency,

resulting in a high volume of, mostly monotonous, data.

This kind of raw sensor data is best stored as a

compressed binary file or in a database table without the

additional overhead of audit attributes, in order to handle

the huge volume of data. However, in the scenario

described in this paper, the high resolution sensor data is

at first analyzed by domain experts and subsequently

filtered and aggregated into lower resolution. Figure 2

illustrates this well-established process. The aggregated

and filtered sensor data is read from the file share and

imported in the DWH. Data analysts might even create

several iterations of analyzed data by applying different

thresholds and aggregation functions to the raw source

data, thus requiring a DWH to store audit information for

each data slice. In addition to the sensor data recorded at

each run of the machine (e.g. actual oven temperature)

the DWH also stores the production parameters set by the

operator (e.g. target oven temperature) to provide a full

representation of the production process.

Figure 2: Schematic representation of scenario data

flow

By combining parameters and recorded sensor values the

DWH is able to provide a full picture of all relevant

production data. The data therefore serves as a

comprehensive source for analytical queries or PdM

systems.

3.2. Data volume analysis

The performance of the devised model will be analyzed

in regards to the data volume expected after up to 5 years

of usage. As Figure 2 shows, each production machine

creates a binary file that is stored on a file share. One file

is created for each single run of the production machine.

For analysis however only the average state (sensor

values) of the machine at specific time slots is relevant.

The machine runs can vary in duration but consist of up

to 3,700 individual time slots at maximum run duration.

Exactly one value for each installed sensor is assigned to

the individual time slot. With up to 24 different sensors

per machine, this results in 88,800 individual values per

run. It is expected that the operator configures one daily

run per machine, which would result in up to 780 per

year, since this feature will be rolled out to 3 machines

of the same type.

For the analysis we investigate the performance of key

operations for every 500 runs, up to a total of 4000 runs

saved in the DWH.

3.3. Description of the DV model

To accommodate the heterogeneous data described in

Section 3.1 the devised DV model has to be generic and

flexible. Sensor values are therefore not persisted in

column orientation, with one table column storing a

sensor value at any given point of time (as illustrated in

Figure 3), but are instead stored in a channel-oriented

manner. This allows easy addition, relocation or upgrade

of sensors to the production machines without the need

to change the DWH model or the importer process.

3.3.1. Column-oriented storage of sensor data

In column-oriented storage, each sensor channel

corresponds to a single column in the data table. This

storage variant of sensor data would be more efficient

than the devised model, if the attributes of the table,

respectively the different applied sensors themselves, are

well known and change little over time. The frequent

addition of new sensor channels or the removal /

relocation of existing ones leads to fragmentation of the

table and consequently to weaker performance and

higher storage consumption in this model approach.

Additionally, the importing tool would need frequent

updates in order to accommodate the change in model

structure.

Figure 3: Alternative column-oriented storage of

channel values

3.3.2. The devised channel-oriented model

Instead, a channel-oriented model approach was used, as

depicted in Figure 1, wherein each run is assigned a

number of different sensor channels. A single channel is

identified by its name (e.g. ‘Temperature Machine A’)

and the type of data stored in this channel (numeric, text

or datetime values). Sensor channel values are assigned

to a run by creating an entry in the link entity. The time

slot dependent order of the sensor values is maintained

by the ‘CycleNumber’ attribute of each link entry. Each

cycle represents a point of time defined by the data

analysts (see Figure 2). All values assigned to a specific

cycle represent the aggregated values, recorded in

different frequencies by the sensor, of one pre-defined

time interval. To provide type safe access and to reduce

storage space each datatype (text, numeric, and

timestamp) is stored in a separate satellite respectively,

as opposed to one large binary column.

The data stored in this generic storage schema is

subsequently transformed periodically into the, easily

humanly interpretable, column-oriented storage form for

on-line analytical processing (OLAP). Transformed data

is stored as data mart, which form a subset of total data

persisted (Chaudhuri & Dayal, 1997). The

transformation operation is defined in Section 4 as one of

the analyzed DBMS queries.

3.4. Applied performance improvements to the

model

The performance improvements discussed in this section

are in many cases specific to the software used in the

experiments and production environment. Some

improvements to ETL and Query performance however

are generally applicable to any RDBMS. E.g.,

relationships between the hubs, links, and satellites were

not enforced by foreign keys, reducing load time of the

RDBMS. Instead, the importer tool is expected to take

care of these restrictions. Besides enforcing the foreign

key references, the importer tool caches the primary keys

of entries. This increases error resilience of the importer

tool for already seen values, since the unique constraints

enforced by the DWH are not violated.

Figure 4: With columnar storage only the relevant

columns have to be retrieved at query time (compare to

Kamal & Gupta (2015))

3.4.1. MSSQL-Server specific improvements

In order to keep the disk size of the database manageable

a clustered columnar store index was applied to the DV

tables. This feature was introduced with MSSQL server

2012 Enterprise. Instead of a traditional row storage, the

values are stored in a columnar storage (see Figure 4 and

Figure 5).

Figure 5: With standard row storage the complete row

has to be retrieved (compare to Kamal & Gupta (2015))

Column storage allows compression of stored values. In

their paper Kamal & Gupta (2015) showed that columnar

storage not only reduced the page sizes of the DB but also

improved performance in an OLAP environment.

Besides the clustered column store, the unique indices for

primary keys were also compressed, which significantly

reduced the database size.

3.4.2. ETL tool improvements

As it is typical for DWH data integration, the data is first

Extracted then Transformed and subsequently Loaded

(ETL) into the DWH. All three steps of this process are

performed by a custom importer implemented in C# and

running on the .NET Core Framework. A custom parser

reads the proprietary binary format containing the

preprocessed sensor data. The parsed data is then

transformed to fit the DWH schema and loaded into the

DB using entity framework (EF).

Memory consumption of the importer tool was reduced

significantly by creating a new EF DbContext for every

single imported binary file. This allowed the .NET

garbage collector to remove the inserted entities and the

EF object graph.

A first version of the importer tool kept a set of all hash

keys to enforce the unique constraint during ETL, which

quickly exceeded memory limits for larger data volumes.

To reduce memory consumption of the tool, only hashes

associated with the current binary source file were kept

in memory.

4. PERFORMANCE ANALYSIS

Typically, a simple high frequency sensor data store must

support regular small writes and occasional large read

bursts, as described by van der Veen et al. (2012),

whereas in this scenario both reads and writes are only

occasional and in large volume.

For this performance analysis though the source data was

not read from a binary file but was instead generated to

simulate the estimated data volume the next 1-5 years of

production usage. Existing sensor data was analyzed

beforehand, to ensure that the generator samples from an

equally distributed value range, which holds

representative values for each individual sensors. For

each of the 5 years the following performance analysis

was made:

a) Average time elapsed on a single ETL file

import.

b) Time elapsed for total index rebuild.

c) Execution time of transformation query for the

single imported run.

d) Execution time of transformation queries for

total data volume for data-mart creation.

e) Sum of used storage space for the DV data.

f) Sum of storage size for compressed indices in

the DWH.

g) Total size of the DB.

The time measured for (a) of a single ETL file import

task is comprised of time spent on generating values

(comparable to time spent reading the binary file) and the

transactional write to the DWH. In the best case, this

metric changes little over increasing DWH size. This

would indicate that the DWH is able to handle bulk

inserts in short time over all years. Due to increasing

index size however the import duration will increase over

total DWH volume.

After successful execution of the ETL process the

fragmentation of indices was checked. Following

recommendations by Microsoft documentation, if critical

fragmentation is reached (Microsoft, 2017), a stored

procedure executes statements as listed in Algorithm 1

for every table affected by the ETL process. The index is

rebuilt with data compression to reduce DB size needed

for indices to a minimum. The elapsed time for execution

is represented by measure (b).

Algorithm 1: snippet for rebuild of compressed index
ALTER INDEX dv_L_Run_Channel_unique_hash
 ON dv.L_Run_Channel
 REBUILD PARTITION = ALL WITH (DATA_COMPRESSION = PAGE)

Measure (c) shows the elapsed execution time of pivot

transformation of the data of the single imported run. The

data is transformed from full historical channel oriented

storage of sensor data (as described in Section 3.3.2) to

column-oriented storage for OLAP, showing only latest

state of values. The transformed values are then added to

the transformed data mart table (dm.RunData). The

transformation query, as part of listing Algorithm 2, is

prepared as a view and queried after every finished ETL

process (to improve readability of the code snippet the

view is included as the actual select query). In order to

calculate the measure (c) the view is filtered by RunId. If

however the structure of the data mart table has to

change, the complete script of Algorithm 2 is executed.

The elapsed time of this script is indicated by measure

(d).

Algorithm 2: rebuild and pivot transformation of channel

oriented data into table oriented representation of data

mart
BEGIN
 DROP TABLE dm.RunData

 SELECT * INTO dm.RunData
 FROM (SELECT c.[Name] AS ChannelName
 , p.RunNr
 , l.CycleNumber
 , d.[value] AS DataValue
 FROM dv.L_Run_Channel l
 JOIN dv.H_Channel c
 ON l.H_Channel_Hash = c.H_Channel_Hash
 JOIN dv.H_Run p
 ON l.H_Run_Hash = p.H_Run_Hash
 LEFT JOIN dv.S_Channel_Double d
 ON d.L_Run_Channel_Hash = l.L_Run_Channel_Hash
 AND c.DataType = 'Double'
 AND d.LoadDate = (SELECT MAX(LoadDate)

 FROM dv.S_Channel_Double sub
 WHERE sub.L_Run_Channel_Hash =
 l.L_Run_Channel_Hash)) p
 PIVOT
 (
 MIN(DataValue)
 FOR ChannelName IN (
 <comma separated list of relevant channel names>
)
) AS PivotTable;
 CREATE NONCLUSTERED INDEX dm_RunNR ON dm.RunData(RunNr)
END

Measures (e) and (f) where calculated by executing the

‘exec sp_spaceused’ command, which provides those

exact measures, whereas (g) is simply the sum of (e) and

(f).

4.1. Test Setup

The model was implemented on a Microsoft SQL Server

2017 running on a Windows 10 machine with an Intel i5

7300U @ 2,6GHz, 32GB RAM and a 512GB SSD. Both

the DB and the importer tool ran on the same computer

simultaneously. To measure the time elapsed during DB

operations or queries the MSSQL statistics time was

turned on. Queries were executed using the MSSQL

server management tool.

4.2. Test Results and Discussion

The main goal of the conducted experiments was to

investigate if the presented model for sensor storage is

able to handle the load of several years in production

usage. To investigate the behavior both elapsed time of

regular operations and storage consumption was

observed.

Figure 6: comparison of operation timings of regular

measures (a) and (c) over number of runs

Measures (a) and (c) indicate the timings of regular

operations of the DWH. A single experiment is expected

to be inserted every day, and subsequently has to be

transformed into the data mart table. The timings as

depicted in Figure 6 show that these regular operations

can be performed in reasonable time, with less than 3

minutes elapsed after the maximum of 4000 imported

runs. The import of a new run into the DV and the

addition of transformed run data into the data mart causes

fragmentation of the applied indices. In production

environment, indices will be monitored and if the

fragmentation exceeds 30% the indices will be rebuild.

Figure 7: comparison of operation timings of irregular

measures (b) and (d) over number of runs

In Figure 7 the timings of measures (b) and (d) are

presented. These measures represent DWH operations

which occur only irregularly, but require longer

runtimes. For high amounts of data (355.320.000 single

values in value satellites and the link table, at 4000 runs

stored in the DB) the operations are still manageable

from the perspective of elapsed time. Especially, since

the experiments were conducted on standard, off the

shelf, hardware. Index rebuild (b) and data mart

transformation (d), executed on all data stored, were both

observed to have spiked CPU usage and RAM

consumption to 100% for the total duration of the

operation. As observed during the experiments, a total

rebuild of indices (b) after reaching >30% fragmentation

of the unique indices will be needed after roughly every

ten imported runs.

As Figure 8 shows, the DB size scales linearly with the

number of stored runs. It also shows very nicely the

effect of column store compression from 500 to 1.000

where the index size increased but data itself could be

compressed more efficiently. With 53.58GB of total DB

size at 4.000 imported runs, the DB remains manageable.

0,00

0,50

1,00

1,50

2,00

2,50

500 1000 1500 2000 2500 3000 3500 4000

Ti
m

e
el

ap
se

d
 in

 m
in

u
te

s

Number of generated runs

(a) ETL duration of a single run

(c) Tranformation of a single run

0

10

20

30

40

50

60

70

500 1000 1500 2000 2500 3000 3500 4000

Ti
m

e
el

ap
se

d
 in

 m
in

u
te

s

Number of generated runs

(b) Rebuild all indices

(d) Data mart transformation

Figure 8: comparison of data size (e), index size (f) and

total DB size (g) over number of runs

Besides the total DB size, the positive effects of the

applied compression techniques can be very nicely

observed in Figure 9. Where the disk space required for

storage of one singe run is shown to decline to as low as

13.71MB, whereas the proprietary binary format used to

store preprocessed runs on the file share, as discussed in

Section 3.1, requires roughly 34MB of storage. These

files however store only the actual sensor values and no

overhead in form of additional audit or info attributes.

Figure 9: DB size needed for data of one single run

5. CONCLUSIONS

The DV modelling approach provides a high degree of

flexibility in regards to the schema. One first has to get

accustomed to the concept of hubs, links and satellites

though. The inherit flexibility of this concept proved to

be beneficial during the development of the schema and

the development of the importer tool. Additional

attributes in need of persistence were easily added as new

satellites.

Moreover, the utilization of calculated hash values for

primary keys instead of DB generated sequence IDs

proved very helpful for ETL, manual correction of the

data and also for tuning queries (e.g. calculating hash

value of a RunId on client side frontend instead of using

the business key in the query). Especially when the

business keys consist of strings of variable length the

hash values even provide performance improvements.

This technique is not limited to the DV modelling

approach and can only be endorsed.

The proposed channel oriented model provides a generic

storage for industrial sensor values, resulting in low to no

maintenance effort needed when additional sensor

channels get introduced in the source files. The model

was observed to be able to handle the expected load of 5

years of production usage.

However, the amount of single rows in the value

satellites and the link table L_Run_Channel might

present a performance bottleneck in the future. One

possible enhancement is to scale the DWH horizontally

by separating the stored runs of the three different

machines onto three different DWH instances.

Another solution to counter the potential performance

bottleneck of the value satellites would be extract all

types of sensors shared by the different machines into a

separate satellite (e.g. all machines measure energy

consumption, temperature). Effectively storing all

common channels and their values in a column-oriented

way but keeping the uncommon channels stored in the

devised generic model.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support

by the Austrian Federal Ministry for Digital and

Economic Affairs and the National Foundation for

Research, Technology and Development within the Josef

Ressel Centre for Symbolic Regression.

Jan Zenisek gratefully acknowledges financial support

within the project “Smart Factory Lab” which is funded

by the European Fund for Regional Development

(EFRE) and the state of Upper Austria as part of the

program “Investing in Growth and Jobs 2014-2020”.

REFERENCES
Chaudhuri, S., & Dayal, U. (1997). An overview of data

warehousing and OLAP technology. ACM

SIGMOD Record, 26(1), 65–74.

https://doi.org/10.1145/248603.248616

Codd, E. F. (1970). A Relational Model of Data for Large

Shared Data Banks. Communications of the ACM,

13(6), 377–387.

https://doi.org/10.1145/362384.362685

Collins, G., & Shibley, M. (2014). Data Vault and

HQDM Principles. SAIS 2014 Proceedings.

Hultgren, H. (2012). Modeling the agile data warehouse

with data vault. New Hamilton.

Inmon, W. H. (2002). Building the data warehouse. John

0

10

20

30

40

50

60

500 1000 1500 2000 2500 3000 3500 4000

si
ze

 in
 G

B

Number of generated runs

(e) data size (f) index size (g) total DB size

0

5

10

15

20

25

500 1000 1500 2000 2500 3000 3500 4000

Si
ze

 o
f

o
n

e
ru

n
 in

 M
B

Number of generated runs

Wiley & Sons, Inc.

Inmon, W. H., & Linstedt, D. (2014). Data Architecture:

A Primer for the Data Scientist: Big Data, Data

Warehouse and Data Vault. Morgan Kaufmann.

Inmon, W. H., Strauss, D., & Neushloss, G. (2010). DW

2.0: The Architecture for the Next Generation of

Data Warehousing. Morgan Kaufmann.

Kamal, A., & Gupta, S. C. (2015). Query based

performance analysis of row and column storage

data warehouse. 9th International Conference on

Industrial and Information Systems, ICIIS 2014.

https://doi.org/10.1109/ICIINFS.2014.7036537

Linstedt, D. (2002). Data Vault Series 1 – Data Vault

Overview. Retrieved July 10, 2018, from

http://tdan.com/data-vault-series-1-data-vault-

overview/5054

Linstedt, D. (2014). datavault 2.0 hashes versus natural

keys. Retrieved May 7, 2018, from

http://danlinstedt.com/allposts/datavaultcat/datava

ult-2-0-hashes-versus-natural-keys/

Linstedt, D., & Olschimke, M. (2015). Building a

Scalable Data Warehouse with Data Vault 2.0.

Morgan Kaufmann.

https://doi.org/10.1016/C2014-0-02486-0

Microsoft. (2017). Reorganize and Rebuild Indexes.

Retrieved July 10, 2018, from

https://docs.microsoft.com/en-us/sql/relational-

databases/indexes/reorganize-and-rebuild-

indexes?view=sql-server-2017

Thomas Bauernhansl, Michael ten Hompel, B. V.-H.

(2014). Industrie 4.0 in Produktion,

Automatisierung und Logistik. (T. Bauernhansl,

M. ten Hompel, & B. Vogel-Heuser, Eds.).

Wiesbaden: Springer Fachmedien Wiesbaden.

https://doi.org/10.1007/978-3-658-04682-8

van der Veen, J. S., van der Waaij, B., & Meijer, R. J.

(2012). Sensor Data Storage Performance: SQL or

NoSQL, Physical or Virtual. 2012 IEEE Fifth

International Conference on Cloud Computing,

431–438.

https://doi.org/10.1109/CLOUD.2012.18

West, M. (2011). Developing High Quality Data Models.

Morgan Kaufmann.

