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ABSTRACT 

Today manufacturing companies are facing important 

challenges from the market in terms of flexibility, ever 

growing product mixes, small lot sizes, high competition, 

etc. To meet these market conditions, digitalization and 

the use of data are offering a viable toolset considering 

the advances in the field throughout the last couple of 

years. 

The increasing use of sensor technology and the need for 

interconnecting data from different departments in smart 

production leads to a surge of recorded data. Persistence 

and integration of heterogeneous data, generated in a 

variety of software systems, is a key factor to gain value 

from data and its analysis. High flexibility in regards to 

the model is required to accommodate the data. Hence, 

application of the data vault modelling approach is a 

fitting candidate to design a data warehouse model. In 

this paper we present a data vault model for factory 

sensor data. We analyze the performance of the data 

warehouse in regards to bulk load of data and common 

analytic queries.  

 

Keywords: industrial data warehouse, data vault, sensor 

data persistence, performance analysis 

 

1. INTRODUCTION 

Industry 4.0 and the Internet of Things (IoT) accelerate 

Digitalization of today’s production plants. Modern 

production machines are now equipped with a variety of 

sensors measuring operational data of the machine and 

the product. In combination with data from material 

acquisition or quality assurance departments industrial 

companies aim to identify key input factors of the 

production process in a smart factory (Bauernhansl, ten 

Hompel, 2014). Persisting and connecting this data 

enables optimization of the process parameters and lays 

the foundation for applying new strategies such as 

Predictive Maintenance (PdM). 

With the increasing volume and diversity of data, new 

challenges in data storage arise. Data is required to be 

stored in a structured and performant manner connected 

in a centralized data warehouse (DWH). The DWH 

enables the integration of various data sources and serves 

as data source for reporting, knowledge bases or PdM 

systems (Inmon, 2002). The data-model contained by the 

database management system (DBMS) must be able to 

handle insertion of data at a high bandwidth, while still 

providing fast analytic query-results based on the 

existing data.  

Additionally, the model has to be flexible in order to 

easily incorporate changes in the structure of the 

operational data and it must stay well-defined to support 

query languages. The data vault modelling approach by 

Linstedt (2002) describes a system well suited for this 

scenario. Hultgren (2012) defines key indicators for 

determining if the application of the data vault modelling 

approach is a good fit. 

 

1. Integration of multiple heterogeneous data 

sources 

2. Accurate and complete time-slice history 

including  audit information for full 

replicability 

3. Frequent addition of new sources or change of 

existing ones 

4. Commitment of the organization to incorporate 

an Enterprise Data Warehouse (EDW) 

  

With all these indicators applicable, the data vault 

modelling approach fits the scenario at hand. In this 

paper, we investigate how the data vault model designed 

for this scenario scales and how reoccurring operations 

(bulk load, analytic queries) perform over increasing data 

volume. This should provide insight if the data vault 

modelling approach is a good fit for persisting sensor 

data of today’s smart factories.  

Related work in this area includes van der Veen et al., 

(2012)  who compared sensor data storage performance 

of relational SQL databases with NoSQL DBMS systems 

in physical and virtualized environments. Collins and 

Shibley (2014) investigated applicability of high quality 

data modelling (HQDM), which define desirable 

properties of a DWH. They showed that the application 

of HQDM principles, as defined by West (2011),  is well 

supported by the DV modelling approach.  

This paper differs from previous work in that it focuses 

on applying the data vault modelling approach for sensor 

data storage and investigates the model’s performance 

behavior over a growing data volume.  
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Figure 1: The devised data vault model for channel oriented storage of production machine sensor data 

 

This paper is organized as follows. First, the data vault 

modelling approach is described in Section 2. Next, the 

data vault model used for the experiments and the kind 

of data to be stored in the DWH is defined in Section 3, 

with focus on how the data in this scenario differs from 

simple high resolution sensor data. Section 4 describes 

the performance-test setup and the results. Finally, 

Section 5 will draw conclusions and describe future work 

in this area. 

 

2. DATA VAULT  

The data vault (DV) modelling approach was defined by 

Linstedt (2002) and was since then further evolved into 

data vault 2.0 (Inmon & Linstedt, 2014; Linstedt & 

Olschimke, 2015). DV supports the requirements of next 

generation data warehouses (DWH  2.0),  as defined by 

Inmon et al. (2010). DV differs significantly from 3rd 

Normal Form (3NF) model first defined by Codd (1970), 

which is the widest spread modelling approach. However 

DV is still compliant with the technical restrictions of a 

relational database management system (RDBMS) 

consisting of tables and their relationships only.  

 

2.1. Table types 

Each RDBMS table represents either a hub (H), link (L) 

or satellite (S) entity, which are used to store and model 

business concepts and their relationships. These three 

core components of DV are covered briefly in the next 

subsections. The description is based on the model 

depicted in Figure 1 where the different table types are 

also marked in different colors and with the type 

abbreviation as prefix. 

 

2.1.1. Hub 

Each logical business concept modelled by DV is 

represented by a hub entity. Besides the audit attributes 

(covered in Section 2.2), a hub only stores the business 

key used to uniquely identify a single instance of the 

business concept.  

Sensor channels (as stored in the table H_Channel) for 

instance are identified by their channel-name and the 

type of data they store (e.g. the combination of name 

‘surface temperature’ and data type ‘real-number’ 

identifies a specific channel). Only on first occurrence of 

this key-combination a new H_Channel hub entry is 

created, no duplicated hub entries are allowed. As this 

example illustrates, the business key can also be a 

composite key. Per definition of data vault 2.0 the 

business key is combined and subsequently reduced by a 

hash function like MD5 to a single identifier (128 bit 

sized, in the case of MD5). This calculated hash is stored 

as the primary key of the hub entity alongside the 

business key. The business key can still be used for 

searching by queries but for references only the 

calculated hash may be used.  

 

2.1.2. Link 

Link entities represent relationships between business 

concepts and logically connect an arbitrary number of 

hubs or other link entities. The link entity therefore stores 

the primary hash keys of all connected hub instances. 

This allows representation of n:m cardinality for any 

business relationship in data vault, effectively providing 

important flexibility to incorporate cardinality change in 

the logical model. A link’s business key consists of the 

sum of all foreign key hash references which are 

subsequently combined and hashed to create the link’s 

primary key.  

Each link entry and its foreign key values represent an 

existing relationship between logical business concepts. 

To represent invalid relationships, the link entity stores 

an end-date to mark from when on the relationship is no 

longer existent. This is necessary since deletion of data, 

in any table type, is not permitted. 



As depicted in Figure 1 for instance an entry in 

L_Run_Channel represents the assignment of a sensor 

channel value to a specific run instance. The run and 

channel hashed business keys are stored as foreign keys. 

 

2.1.3. Satellite 

Whereas hubs store only the key of a business concept, 

the connected satellites store all associated descriptive 

attributes. In the case of a sensor installed in a smart 

factory plant, the sensor satellite might store the location 

and a description. Each satellite stores the foreign key 

reference to the hub or link instance and the specific date 

and time when the current state of attributes was loaded, 

making up the primary key of a satellite. Consequently, 

each entry of a satellite is a time slice representing the 

states of the business concept stored in the hub and its 

connected satellites, with the latest entry representing the 

current state. Following the DV modelling approach the 

entire attributes associated with a hub entity are not 

necessarily stored in one single satellite table. Hultgren 

(2012) encourages to separate satellites by: 

 

1. Subject Area / Data Context 

2. Rate of Change 

3. Source System 

4. Type of Data 

 

This means that new satellites are created to store 

additional attributes that are defined for a business entity 

instead of adding new columns to existing tables. 

Separating satellites by the above criteria reduces the 

amount of sparse values and duplicated data on insertion 

of a new time slice and therefore reduce the total memory 

space. 

In the case of the depicted model of Figure 1, the 

satellites storing the sensor values are separated 

according to the last 3 separation indicators.  

 

2.2. Historical data and auditing 

Generally speaking the DV allows only additive changes 

to the model/schema and the data, to provide historically 

correct and complete data views, with the only exception 

to that rule being the link’s EndDate column which is 

updated once a relationship is no longer valid. Each 

change in the source data is persisted by insertion of a 

new satellite data slice.  

Apart from the business data the DV entities store audit 

fields. The attributes LoadedBy, RecordSource and 

LoadDate provide information about the data source 

system and the import service. Whereas EditedBy and the 

LoadDate provide information about the user, who 

conducted the data change. 

 

2.3. Unique features of the data vault approach 

The utilization of hashed business keys as primary key 

holds two main benefits in this scenario. First, it 

improves join performance of analytical queries. Key 

comparison is faster for a single primary key of fixed data 

type and consistent length when compared to the join 

performance of longer natural keys or utilization of 

composite keys (Linstedt, 2014). Second, the hash value 

of the business key can be calculated at load time of the 

data. This improves performance of bulk inserts, since 

hubs and satellites can be loaded parallel after foreign 

key constraints are deactivated for the load process or not 

present at all. In contrast, utilization of a bigint with auto 

increment also creates keys of equal lengths, but the hub 

entry has to be created beforehand in order to load the 

satellites. 

 

3. MODEL AND DATA QUANTITY 

This section aims to provide a clearer picture of the kind 

of data to be stored in the DV model. We describe a more 

complex scenario where the data differs from a simple 

log of recorded sensor data. A description of the origin 

of the data will highlight the need for storing audit 

information. Subsequently we describe why we chose to 

model the data as shown in Figure 1 and how we 

improved the performance of the model. 

3.1. Data origin 

Typically, a sensor records data in high frequency, 

resulting in a high volume of, mostly monotonous, data. 

This kind of raw sensor data is best stored as a 

compressed binary file or in a database table without the 

additional overhead of audit attributes, in order to handle 

the huge volume of data. However, in the scenario 

described in this paper, the high resolution sensor data is 

at first analyzed by domain experts and subsequently 

filtered and aggregated into lower resolution. Figure 2 

illustrates this well-established process. The aggregated 

and filtered sensor data is read from the file share and 

imported in the DWH. Data analysts might even create 

several iterations of analyzed data by applying different 

thresholds and aggregation functions to the raw source 

data, thus requiring a DWH to store audit information for 

each data slice. In addition to the sensor data recorded at 

each run of the machine (e.g. actual oven temperature) 

the DWH also stores the production parameters set by the 

operator (e.g. target oven temperature) to provide a full 

representation of the production process.   

 
 

 

Figure 2: Schematic representation of scenario data 

flow 

 

By combining parameters and recorded sensor values the 

DWH is able to provide a full picture of all relevant 

production data. The data therefore serves as a 

comprehensive source for analytical queries or PdM 

systems. 



3.2. Data volume analysis 

The performance of the devised model will be analyzed 

in regards to the data volume expected after up to 5 years 

of usage. As Figure 2 shows, each production machine 

creates a binary file that is stored on a file share. One file 

is created for each single run of the production machine. 

For analysis however only the average state (sensor 

values) of the machine at specific time slots is relevant. 

The machine runs can vary in duration but consist of up 

to 3,700 individual time slots at maximum run duration. 

Exactly one value for each installed sensor is assigned to 

the individual time slot. With up to 24 different sensors 

per machine, this results in 88,800 individual values per 

run. It is expected that the operator configures one daily 

run per machine, which would result in up to 780 per 

year, since this feature will be rolled out to 3 machines 

of the same type.  

For the analysis we investigate the performance of key 

operations for every 500 runs, up to a total of 4000 runs 

saved in the DWH.  

 

3.3. Description of the DV model 

To accommodate the heterogeneous data described in 

Section 3.1 the devised DV model has to be generic and 

flexible. Sensor values are therefore not persisted in 

column orientation, with one table column storing a 

sensor value at any given point of time (as illustrated in 

Figure 3), but are instead stored in a channel-oriented 

manner. This allows easy addition, relocation or upgrade 

of sensors to the production machines without the need 

to change the DWH model or the importer process. 

 

3.3.1. Column-oriented storage of sensor data 

In column-oriented storage, each sensor channel 

corresponds to a single column in the data table. This 

storage variant of sensor data would be more efficient 

than the devised model, if the attributes of the table, 

respectively the different applied sensors themselves, are 

well known and change little over time. The frequent 

addition of new sensor channels or  the removal / 

relocation of existing ones leads to fragmentation of the 

table and consequently to weaker performance and 

higher storage consumption in this model approach. 

Additionally, the importing tool would need frequent 

updates in order to accommodate the change in model 

structure.  

 

 
Figure 3: Alternative column-oriented storage of 

channel values 

3.3.2. The devised channel-oriented model 

Instead, a channel-oriented model approach was used, as 

depicted in Figure 1, wherein each run is assigned a 

number of different sensor channels. A single channel is 

identified by its name (e.g. ‘Temperature Machine A’) 

and the type of data stored in this channel (numeric, text 

or datetime values). Sensor channel values are assigned 

to a run by creating an entry in the link entity. The time 

slot dependent order of the sensor values is maintained 

by the ‘CycleNumber’ attribute of each link entry. Each 

cycle represents a point of time defined by the data 

analysts (see Figure 2). All values assigned to a specific 

cycle represent the aggregated values, recorded in 

different frequencies by the sensor, of one pre-defined 

time interval. To provide type safe access and to reduce 

storage space each datatype (text, numeric, and 

timestamp) is stored in a separate satellite respectively, 

as opposed to one large binary column. 

The data stored in this generic storage schema is 

subsequently transformed periodically into the, easily 

humanly interpretable, column-oriented storage form for 

on-line analytical processing (OLAP). Transformed data 

is   stored as data mart, which form a subset of total data 

persisted (Chaudhuri & Dayal, 1997). The 

transformation operation is defined in Section 4 as one of 

the analyzed DBMS queries. 

 

3.4. Applied performance improvements to the 

model 

The performance improvements discussed in this section 

are in many cases specific to the software used in the 

experiments and production environment. Some 

improvements to ETL and Query performance however 

are generally applicable to any RDBMS. E.g., 

relationships between the hubs, links, and satellites were 

not enforced by foreign keys, reducing load time of the 

RDBMS. Instead, the importer tool is expected to take 

care of these restrictions. Besides enforcing the foreign 

key references, the importer tool caches the primary keys 

of entries. This increases error resilience of the importer 

tool for already seen values, since the unique constraints 

enforced by the DWH are not violated. 

 

 
Figure 4: With columnar storage only the relevant 

columns have to be retrieved at query time (compare to 

Kamal & Gupta (2015)) 

 

3.4.1. MSSQL-Server specific improvements 

In order to keep the disk size of the database manageable 

a clustered columnar store index was applied to the DV 

tables. This feature was introduced with MSSQL server 

2012 Enterprise. Instead of a traditional row storage, the 

values are stored in a columnar storage (see Figure 4 and 

Figure 5).  



 
Figure 5: With standard row storage the complete row 

has to be retrieved (compare to Kamal & Gupta (2015)) 

 

Column storage allows compression of stored values. In 

their paper Kamal & Gupta (2015) showed that columnar 

storage not only reduced the page sizes of the DB but also 

improved performance in an OLAP environment. 

Besides the clustered column store, the unique indices for 

primary keys were also compressed, which significantly 

reduced the database size.  

 

3.4.2. ETL tool improvements 

As it is typical for DWH data integration, the data is first 

Extracted then Transformed and subsequently Loaded 

(ETL) into the DWH. All three steps of this process are 

performed by a custom importer implemented in C# and 

running on the .NET Core Framework. A custom parser 

reads the proprietary binary format containing the 

preprocessed sensor data. The parsed data is then 

transformed to fit the DWH schema and loaded into the 

DB using entity framework (EF).  

Memory consumption of the importer tool was reduced 

significantly by creating a new EF DbContext for every 

single imported binary file. This allowed the .NET 

garbage collector to remove the inserted entities and the 

EF object graph.  

A first version of the importer tool kept a set of all hash 

keys to enforce the unique constraint during ETL, which 

quickly exceeded memory limits for larger data volumes.  

To reduce memory consumption of the tool, only hashes 

associated with the current binary source file were kept 

in memory.  

 

4. PERFORMANCE ANALYSIS 

Typically, a simple high frequency sensor data store must 

support regular small writes and occasional large read 

bursts, as described by van der Veen et al. (2012), 

whereas in this scenario both reads and writes are only 

occasional and in large volume.  

For this performance analysis though the source data was 

not read from a binary file but was instead generated to 

simulate the estimated data volume the next 1-5 years of 

production usage. Existing sensor data was analyzed 

beforehand, to ensure that the generator samples from an 

equally distributed value range, which holds 

representative values for each individual sensors.  For 

each of the 5 years the following performance analysis 

was made: 

 

a) Average time elapsed on a single ETL file 

import.  

b) Time elapsed for total index rebuild.  

c) Execution time of transformation query for the 

single imported run. 

d) Execution time of transformation queries for 

total data volume for data-mart creation.  

e) Sum of used storage space for the DV data. 

f) Sum of storage size for compressed indices in 

the DWH. 

g) Total size of the DB. 

 

The time measured for (a) of a single ETL file import 

task is comprised of time spent on generating values 

(comparable to time spent reading the binary file) and the 

transactional write to the DWH. In the best case, this 

metric changes little over increasing DWH size. This 

would indicate that the DWH is able to handle bulk 

inserts in short time over all years. Due to increasing 

index size however the import duration will increase over 

total DWH volume.  

After successful execution of the ETL process the 

fragmentation of indices was checked. Following 

recommendations by Microsoft documentation, if critical 

fragmentation is reached (Microsoft, 2017), a stored 

procedure executes statements as listed in Algorithm 1 

for every table affected by the ETL process. The index is 

rebuilt with data compression to reduce DB size needed 

for indices to a minimum. The elapsed time for execution 

is represented by measure (b). 

 

Algorithm 1: snippet for rebuild of compressed index 
ALTER INDEX dv_L_Run_Channel_unique_hash   
 ON dv.L_Run_Channel     
 REBUILD PARTITION = ALL WITH (DATA_COMPRESSION = PAGE) 

 

Measure (c) shows the elapsed execution time of pivot 

transformation of the data of the single imported run. The 

data is transformed from full historical channel oriented 

storage of sensor data (as described in Section 3.3.2) to 

column-oriented storage for OLAP, showing only latest 

state of values. The transformed values are then added to 

the transformed data mart table (dm.RunData). The 

transformation query, as part of listing Algorithm 2, is 

prepared as a view and queried after every finished ETL 

process (to improve readability of the code snippet the 

view is included as the actual select query). In order to 

calculate the measure (c) the view is filtered by RunId. If 

however the structure of the data mart table has to 

change, the complete script of Algorithm 2 is executed. 

The elapsed time of this script is indicated by measure 

(d). 

 

Algorithm 2: rebuild and pivot transformation of channel 

oriented data into table oriented representation of data 

mart 
BEGIN 
 DROP TABLE dm.RunData 
 
 SELECT * INTO dm.RunData  
 FROM (SELECT c.[Name] AS ChannelName 
    , p.RunNr 
    , l.CycleNumber 
    ,  d.[value] AS DataValue  
  FROM dv.L_Run_Channel l 
  JOIN dv.H_Channel c  
   ON l.H_Channel_Hash = c.H_Channel_Hash 
  JOIN dv.H_Run p  
   ON l.H_Run_Hash = p.H_Run_Hash 
  LEFT JOIN dv.S_Channel_Double d  
   ON d.L_Run_Channel_Hash = l.L_Run_Channel_Hash  
   AND c.DataType = 'Double' 
   AND d.LoadDate = (SELECT MAX(LoadDate)  



       FROM dv.S_Channel_Double sub  
       WHERE sub.L_Run_Channel_Hash =  
         l.L_Run_Channel_Hash)) p 
  PIVOT 
  ( 
   MIN(DataValue) 
    FOR ChannelName IN ( 
  <comma separated list of relevant channel names> 
 ) 
  ) AS PivotTable; 
 CREATE NONCLUSTERED INDEX dm_RunNR ON dm.RunData(RunNr) 
END  

Measures (e) and (f) where calculated by executing the 

‘exec sp_spaceused’ command, which provides those 

exact measures, whereas (g) is simply the sum of (e) and 

(f).  

  

4.1. Test Setup 

The model was implemented on a Microsoft SQL Server 

2017 running on a Windows 10 machine with an Intel i5 

7300U @ 2,6GHz, 32GB RAM and a 512GB SSD. Both 

the DB and the importer tool ran on the same computer 

simultaneously. To measure the time elapsed during DB 

operations or queries the MSSQL statistics time was 

turned on. Queries were executed using the MSSQL 

server management tool.  

 

4.2. Test Results and Discussion 

The main goal of the conducted experiments was to 

investigate if the presented model for sensor storage is 

able to handle the load of several years in production 

usage. To investigate the behavior both elapsed time of 

regular operations and storage consumption was 

observed. 

 

 
Figure 6: comparison of operation timings of regular 

measures (a) and (c) over number of runs 

 

Measures (a) and (c) indicate the timings of regular 

operations of the DWH. A single experiment is expected 

to be inserted every day, and subsequently has to be 

transformed into the data mart table. The timings as 

depicted in Figure 6 show that these regular operations 

can be performed in reasonable time, with less than 3 

minutes elapsed after the maximum of 4000 imported 

runs. The import of a new run into the DV and the 

addition of transformed run data into the data mart causes 

fragmentation of the applied indices. In production 

environment, indices will be monitored and if the 

fragmentation exceeds 30% the indices will be rebuild. 

 

 

Figure 7: comparison of operation timings of irregular 

measures (b) and (d) over number of runs 

 

In Figure 7 the timings of measures (b) and (d) are 

presented. These measures represent DWH operations 

which occur only irregularly, but require longer 

runtimes. For high amounts of data (355.320.000 single 

values in value satellites and the link table, at 4000 runs 

stored in the DB) the operations are still manageable 

from the perspective of elapsed time. Especially, since 

the experiments were conducted on standard, off the 

shelf, hardware. Index rebuild (b) and data mart 

transformation (d), executed on all data stored, were both 

observed to have spiked CPU usage and RAM 

consumption to 100% for the total duration of the 

operation. As observed during the experiments, a total 

rebuild of indices (b) after reaching >30% fragmentation 

of the unique indices will be needed after roughly every 

ten imported runs. 

As Figure 8 shows, the DB size scales linearly with the 

number of stored runs. It also shows very nicely the 

effect of column store compression from 500 to 1.000 

where the index size increased but data itself could be 

compressed more efficiently. With 53.58GB of total DB 

size at 4.000 imported runs, the DB remains manageable. 
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Figure 8: comparison of data size (e), index size (f) and 

total DB size (g) over number of runs 

 

Besides the total DB size, the positive effects of the 

applied compression techniques can be very nicely 

observed in Figure 9. Where the disk space required for 

storage of one singe run is shown to decline to as low as 

13.71MB, whereas the proprietary binary format used to 

store preprocessed runs on the file share, as discussed in 

Section 3.1, requires roughly 34MB of storage. These 

files however store only the actual sensor values and no 

overhead in form of additional audit or info attributes. 

 

 

Figure 9: DB size needed for data of one single run 

 

 

5. CONCLUSIONS 

The DV modelling approach provides a high degree of 

flexibility in regards to the schema. One first has to get 

accustomed to the concept of hubs, links and satellites 

though. The inherit flexibility of this concept proved to 

be beneficial during the development of the schema and 

the development of the importer tool. Additional 

attributes in need of persistence were easily added as new 

satellites.  

Moreover, the utilization of calculated hash values for 

primary keys instead of DB generated sequence IDs 

proved very helpful for ETL, manual correction of the 

data and also for tuning queries (e.g. calculating hash 

value of a RunId on client side frontend instead of using 

the business key in the query). Especially when the 

business keys consist of strings of variable length the 

hash values even provide performance improvements.   

This technique is not limited to the DV modelling 

approach and can only be endorsed. 

The proposed channel oriented model provides a generic 

storage for industrial sensor values, resulting in low to no 

maintenance effort needed when additional sensor 

channels get introduced in the source files. The model 

was observed to be able to handle the expected load of 5 

years of production usage.  

However, the amount of single rows in the value 

satellites and the link table L_Run_Channel might 

present a performance bottleneck in the future. One 

possible enhancement is to scale the DWH horizontally 

by separating the stored runs of the three different 

machines onto three different DWH instances.  

Another solution to counter the potential performance 

bottleneck of the value satellites would be extract all 

types of sensors shared by the different machines into a 

separate satellite (e.g. all machines measure energy 

consumption, temperature). Effectively storing all 

common channels and their values in a column-oriented 

way but keeping the uncommon channels stored in the 

devised generic model.   
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