
ANALYSIS OF UNCERTAINTY IN

ENGINEERING DESIGN OPTIMIZATION PROBLEMS

Philipp Fleck(a), Michael Kommenda(b), Michael Affenzeller(c), Thorsten Prante(d)

(a), (b), (c) Heuristic and Evolutionary Algorithms Laboratory,

University of Applied Sciences Upper Austria, Softwarepark 11, 4232 Hagenberg i. M., Austria
(b), (c) Institute for Formal Verification,

Johannes Kepler University, Altenberger Straße 69, 4040 Linz, Austria
(d) V-Research GmbH,

CAMPUS V, Stadtstraße 33, 6850 Dornbirn

(a)philipp.fleck@fh-hagenberg.at, (b)michael.kommenda@fh-hagenberg.at,

(c)michael.affenzeller@fh-hagenberg.at, (d)thorsten.prante@v-research.at

ABSTRACT

In this paper, we analyze popular benchmark instances in

the field of engineering design optimization regarding

the robustness of published solutions. First, we

implement selected benchmark problems with

HeuristicLab and show the advantages of having a

framework that enables rapid prototyping for

optimization and analysis. Then, we show that many

solutions quickly become infeasible when considering

uncertainty like production inaccuracies. Based on these

findings, we motivate why robust solutions for

engineering design are important and present methods

for measuring, identifying and visualizing robustness.

Finally, we present how solutions can be compared and

selected using a novel robustness measure.

Keywords: engineering design optimization, constraint

handling, uncertainty, robustness

1. INTRODUCTION

The increasing complexity of today’s engineering tasks

have made computer systems an omnipresent part of the

engineering design process. These tools help human

experts to make meaningful design choices in order to

develop products or systems that satisfy a complex set of

requirements. Particularly, finding the optimal set of

decisions for a given engineering design problem is an

ongoing challenge.

Engineering design problems are often formulated as

constrained optimization problems with a design vector

𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ ℝ𝑛, an objective function 𝑓(𝒙),

inequality constraints 𝑔𝑗(𝒙) ≤ 0 and equality constraints

ℎ𝑘(𝒙) = 0 with 𝑓, 𝑔𝑗 , ℎ𝑘: ℝ𝑛 → ℝ. The range of each

design value 𝑥𝑖 is either given explicitly, as 𝑚𝑖𝑛𝑖 ≤ 𝑥𝑖 ≤

𝑚𝑎𝑥𝑖, or as inequality constraints; for example 1 ≤ 𝑥1 ≤

5 is equivalent to 𝑔1 = 1 − 𝑥1 ≤ 0 and 𝑔2 = 𝑥1 − 5 ≤ 0.

A variety of benchmark engineering design optimization

problems exists for evaluating and comparing different

optimization techniques. In this paper, we cover four well

studied benchmark problems, with formal descriptions of

each problem given in the Appendix:

 Pressure Vessel (PV) (Sandgren 1988)

 Speed Reducer (SR) (Golinski 1973)

 Tension/Compression Spring (TCS)

(Belegundu 1982)

 Welded Beam (WB) (Ragsdell and Phillips

1976)

We show how to implement the selected benchmark

problems with the open source optimization framework

HeuristicLab (Wagner et al. 2014) and demonstrate the

advantages and simplicity of using a framework for rapid

prototyping and compare our solutions to solutions from

relevant literature. Then, we discuss uncertainty and

present methods to quantify uncertainty and finally, we

introduce analysis methods to compare the robustness of

different solutions.

2. OPTIMIZATION OF ENGINEERING DESIGN

PROBLEMS

2.1. Solving Engineering Design Optimization

Problems with HeuristicLab

HeuristicLab (Wagner et al. 2014) is an open source

framework for heuristic optimization that is freely

available at http://dev.heuristiclab.com and offers a wide

range of popular optimization algorithms and benchmark

problems. Users can easily implement their own

optimization problems, using the built-in scripting

environment, which allows specifying the objective

function of optimization problems in C# code directly in

HeuristicLab (Scheibenpflug et al. 2015).

mailto:philipp.fleck@fh-hagenberg.at
mailto:michael.kommenda@fh-hagenberg.at
mailto:michael.affenzeller@fh-hagenberg.at
mailto:thorsten.prante@v-research.at

To implement a new problem, the user has to create a

Programmable Problem (single-objective), where some

exemplary code is already provided. After having

implemented the problem, the code is compiled at

runtime and the problem can be solved using one of the

many algorithms. A fully specified optimization problem

requires three parts that the user has to implement (for

illustration see Figure 1):

1. Specification whether the objective should be

maximized or minimized, which is done by

implementing the Maximization property.

2. An appropriate Encoding for the optimization

problem. Code for popular encodings is already

provided in the Initialize method, for instance

the RealVectorEncoding.

3. The objective function, which is implemented

in the Evaluate method and has to return the

quality of a given solution.

Different forms of evaluating the objective are possible,

ranging from implementing code for a simple analytical

model to executing a full-scaled simulation. The

benchmark optimization problems used in this paper

specify analytical objective functions and are therefore

quite easy to implement. For instance, the objective

function for the tension/compression spring problem,

𝑓(𝒙) = (𝑥3 + 2) ⋅ 𝑥2 ⋅ 𝑥1

2 , (1)

translates to the following source code (without

constraint handling):

public double Evaluate(

 Individual ind, IRandom r) {

 var x = ind.RealVector();

 double x1=x[0], x2=x[1], x3=x[2];

 return (x3 + 2) * x2 * x1*x1;

}

Optionally, the Analyze method in the Programmable

Problem can be implemented to gather additional

information during the optimization, for instance

recording the best feasible solution found. Figure 1

shows a screenshot of a fully specified optimization

problem, including constraint handling.

Furthermore, HeuristicLab can be extended by

developing new plugins, which allows the user to

implement new encodings or new algorithms (see

Scheibenpflug et al. (2015) for more details).

2.2. Constraint Handling

Many optimization problems specify different kinds of

constraints. However, optimization algorithms usually

do not handle constraints explicitly and require them

being incorporated into the objective function. A

common way of handling constraints are penalty

functions, where the original constrained objective

function is transformed into an unconstrained objective

function by adding a penalty for infeasible solutions

(Coello Coello 2002).

Figure 1: Screenshot showing the implementation of the

tension/compression spring problem with HeuristicLab’s

integrated scripting environment.

A new unconstrained objective function 𝜙(𝒙) is often

formulated as

 𝜙(𝒙) = 𝑓(𝒙) ± (∑ 𝑟𝑗𝐺𝑗 + ∑ 𝑐𝑘𝐻𝑘
𝑘=1𝑗=1

) (2)

where 𝑟𝑗 and 𝑐𝑘 are constants called penalty factors. 𝐺𝑗

and 𝐻𝑘 are functions of the inequality and equality

constraints 𝑔𝑗(𝒙) and ℎ𝑘(𝒙) respectively and are

commonly defined as

𝐺𝑗 = max(0, 𝑔𝑗(𝒙))
𝛽

and 𝐻𝑘 = |ℎ𝑘(𝒙)|𝛾 (3)

where 𝛽 and 𝛾 are usually 1 or 2. The penalties are added

if the problem is minimized, or subtracted if maximized.

All problems solved in this paper are minimization

problems with only inequality constraints; further, we

simplify problem specification by only a single penalty

value 𝑟. The resulting objective function used further in

this paper is

𝜙(𝒙) = 𝑓(𝒙) + 𝑟 ∑ max(0, 𝑔𝑗(𝒙))
𝑗=1

 . (4)

For each optimization problem, the penalty factor 𝑟 is

determined by obtaining a typical objective value for this

problem and multiplying it by a factor to make it

intentionally worse. We obtained the typical objective

value by calculating the mean of 10,000 random

solutions and then multiplying it by 5. For each problem,

the resulting penalty value is stated in Table 1.

2.3. Single-Objective Optimization

We use the Covariance Matrix Adaption Evolution

Strategy (CMA-ES) to solve the engineering design

optimization problems. The CMA-ES is a population-

based evolutionary algorithm, specifically designed for

real-valued, single objective optimization problems

(Hansen et al. 2003).

The basic idea of the algorithm is to sample promising

areas in the search space with a multivariate normal

distribution 𝒩(𝒎, 𝜎2𝐶), defined by the mean vector 𝒎 ∈

ℝ𝑛 and the covariance matrix 𝜎2𝐶 ∈ ℝ𝑛×𝑛 where 𝜎 ∈ ℝ

defines an additional scaling factor (called the step-size).

Figure 2 illustrates different types of distributions by

different covariance matrices.

Figure 2: Different distributions given by the same mean

vector but different covariance matrices, symbolized by

density-ellipsoids: The identity covariance matrix

resulting in circular distributions (left). A diagonal

covariance matrix resulting in axis-aligned distributions

(middle). A symmetric, positive-definite matrix capable

of describing axis-independent distributions (right). The

background shows the gradients of the search space

towards the optimum in the upper right. Figure adapted

from Hansen (2005).

The algorithm maintains and updates the parameters of

the multivariate normal distribution so that it increases

the probability of moving towards promising areas in the

search space. Creating new sample points and updating

the parameters is done iteratively, until a termination

criteria is met. The following briefly describes the main

parts of the CMA-ES. An extensive description is given

in Hansen et al. (2003).

(1) In the beginning, the first mean vector 𝒎 is

determined by randomly creating 𝜆 vectors and

calculating their mean. The initial step-size 𝜎 is

given by the user, usually as a vector to setup axis-

scaling for each dimension. The matrix 𝐶 is

initialized with the identity matrix.

(2) At each iteration, 𝜆 samples are created with the

multivariate normal distribution 𝒩(𝒎, 𝜎2𝐶), with

the mean vector 𝒎 describing the current center of

search and the covariance matrix 𝜎2𝐶 describing the

form of the distribution and thus the search direction.

The step-size 𝜎 controls the scale, therefore the

“speed” the algorithm moves through the search

space.

(3) The solutions are evaluated according to the given

objective function and sorted based on their

objective value.

(4) The weighted sum of the 𝜇 best solutions is

calculated to determine the new mean vector 𝒎. The

weights, which must sum to one, are either equal or

decrease to favor better solutions.

(5) The step-size 𝜎 is updated based on the 1/5th success

rule already used in a standard evolution strategy

(Schumer and Steiglitz 1968). The matrix 𝐶 is

updated based on the gradient of the quality,

approximated by the sampled solutions.

2.4. Results

We implemented and optimized the four selected

engineering design optimization problems with the

techniques described in the previous sections. For all

problems we used the CMA-ES with a population size

(𝜆) of 50 and 25 individuals (𝜇) for calculating the new

mean (log-scaled weighting). After a maximum of a 100

iterations, the algorithm terminates. Table 1 shows the

initial step-size 𝜎 and penalty factor 𝑟 for each problem.

Table 1: Parameters used for the different problems.
Probl. Initial 𝜎 𝑟

PV (2, 2, 63, 63) 65000

SR (0.33, 0.033, 3.67, 0.33, 0.33, 0.33, 0.167) 20000

TCS (0.65, 0.35, 4.33) 50

WB (0.63, 3.3, 3.3, 0.63) 70

Table 2 contains a comparison between our results and

the results of various literature, showing that the results

of the CMA-ES are equal or close to the best-found

solutions from the literature. This demonstrates that

common benchmark optimization problems in the fields

of engineering design can be solved with little

implementation effort, when using an appropriate

framework that allows easy problem specification and

offers proper optimization algorithms. Otherwise,

implementing the problem specification and

optimization algorithms can be time consuming.

While recalculating the quality of the solutions from the

literature for validation, we observed that several

solutions slightly violate some of the constraints. We

suspect that the published solutions are rounded to some

degree, causing the small infeasibilities in our

calculations. Hence, we introduced a tolerance value for

evaluating inequality constraints, so that 𝑔𝑗(𝒙) ≤ 10𝜖, to

determine how closely the constraints are violated. Table

2 includes the number of violated constraints per solution

and states the tolerance value so that the solution

becomes feasible. Not all authors reported solutions for

all four problems we analyze, thus some entries in the

table are empty.

For readability, the numbers in Table 2 are rounded,

yielding solutions with the same quality but different

constraint violations. A detailed table with the precise

qualities and the all solution vectors is available online at

http://dev.heuristiclab.com/AdditionalMaterial#EMSS2016.

Additionally, all implemented problems and fully

configured optimization algorithms along with the

algorithm results presented in this paper are also

available under the same URL.

For some problems multiple versions exist, e.g. Welded

Beam, thus we only compare results that were solved

using the exact same problem specification. The exact

specifications used in this paper can be found in the

Appendix.

http://dev.heuristiclab.com/AdditionalMaterial#EMSS2016

Table 2: Results of selected engineering design problems solved by the CMA-ES (present study) compared with other

selected literature solutions. “Quality” shows the quality (rounded) of the best solution found, “V” shows the number of

violated constraints for that solution and “𝜖” the tolerance factor (in 10𝜖) to make the solution feasible. The best and best

feasible solution are marked bold.

Reference
Pressure Vessel Speed Reducer Tension/C. Spring Welded Beam

Quality V 𝜖 Quality V 𝜖 Quality V 𝜖 Quality V 𝜖

Present study 6059.71 0 2994.47 0 0.0126652 0 2.38096 0

(Akay and Karaboga 2010) 6059.71 1 -8 2997.06 1 -6 0.0126650 1 -4

(Akhtar et al. 2002) 6171.00 0 3008.08 0 2.44260 0

(Azad and Fernandes 2011) 6059.53 2 0 2994.32 2 -3 0.0126640 2 -4 2.38081 1 -4

(Bernardino et al. 2007) 6060.37 0 2994.47 1 -6 0.0126680 0 2.38122 0

(Bernardino et al. 2007) 6060.14 0 2994.47 0 0.0126660 0 2.38125 0

(Bernardino et al. 2008) 6059.85 0 2996.35 1 -6 0.0126660 1 -5 2.38144 0

(Bernardino et al. 2008) 6065.82 0 2996.35 1 -6 0.0126838 0 2.38335 0

(Bernardino et al. 2008) 6832.58 1 1 2996.35 1 -6 0.0126790 0 2.59610 0

(Cagnina et al. 2008) 6059.71 1 -1 2996.35 2 -6 0.0126650 1 -4

(Coello Coello 2000) 6288.74 0 0.0127048 0

(He and Wang 2007) 6061.08 0 0.0126747 0

(He et al. 2004) 6059.71 1 -10 0.0126653 1 -7 2.38096 0

(Hu et al. 2003) 6059.13 1 -7 0.0126661 1 -8

(Kaveh and Talatahari 2009) 6059.09 1 -4 0.0126391 1 -2

(Kaveh and Talatahari 2010) 6059.73 0 0.0126432 1 -2

(Lemonge et al. 2010) 6059.72 1 1 2996.35 1 -6 0.0126790 1 -5 2.38124 0

(Mezura Montes et al. 2003) 6059.71 1 1 3025.01 0 0.0126650 0

(Mezura Montes et al. 2007) 6059.70 2 1 2996.36 0 0.0126980 0

(Ray and Liew 2003) 2994.74 0 0.0126692 0 2.38543 0

(Rocha and Fernandes 2009) 6071.17 0 2994.37 0 0.0126680 0 2.38627 0

(Rocha and Fernandes 2009) 6072.23 0 2995.80 0 0.0126670 0 2.43162 0

(Tomassetti 2010) 6059.71 1 -8 2996.35 1 -6 0.0126650 0

(Zhang et al. 2008) 7197.70 1 1 2994.47 0 0.0126652 1 -8 2.38096 0

3. ROBUSTNESS IN ENGINEERING DESIGN

Our results in Section 2.4 show that small deviations can

make solutions infeasible. In this section, we generalize

these small deviations by applying uncertainty in various

stages of the engineering design process to observe how

the final quality and feasibility of solutions changes. Our

goal is to find robust solutions that stay feasible for

increasing uncertainty while maintaining high quality.

To analyze robustness, we first define different types of

uncertainty and describe how to quantify them. Then, we

introduce methods for measuring and visualizing

robustness that allows comparing different solutions.

Finally, we introduce a novel measure that allows

ranking of solutions based on their robustness.

3.1. Uncertainty characterization

Uncertainty summarizes indirect influences that can

occur during the engineering design process and are not

controllable by the design vector 𝒙. Beyer and Sendhoff

(2007) describe four types of uncertainty, based on which

aspect of evaluation is influenced.

A) Changing environmental and operating conditions

summarize controllable influences of the evaluation

process that are not reflected in the design variables.

Typical influences are environmental settings like

operating temperature.

The objective function 𝑓 becomes a function of the

design vector 𝒙 and an additional parameter vector 𝜶 that

quantifies all additional settings of the system,

𝑓 = 𝑓(𝒙, 𝜶) . (5)

B) Production tolerances and actuator imprecision

summarize uncontrollable influences on the design

vector. For instance, machine imprecision when actually

manufacturing a product described by the design vector.

Formally, a perturbation vector 𝜹 is added on the design

vector, resulting in an objective function

𝑓 = 𝑓(𝒙 + 𝜹, 𝜶) , (6)

where the perturbation is absolute or relative (𝜹 = 𝝐 ∗ 𝒙).

C) Uncertainty in the system output occurs due to

imprecise measuring of the output. The observed output

differs from the actual evaluation output, which is

formally described by a random function

𝑓 = 𝑓[𝑓(𝒙 + 𝜹, 𝜶)] . (7)

D) Feasibility uncertainties summarize effects on

constraint satisfaction. Technically, this is not a separate

type of uncertainty and is often modeled as type A or type

B.

In the remainder of this paper, we only use uncertainty

type B, production tolerances, because they can be

specified in the same way for all engineering design

problems and they are best suited to demonstrate

uncertainty in this paper.

3.2. Quantifying Uncertainty

Uncertainties can be quantified deterministically,

probabilistically or possibilistically (Beyer and Sendhoff

2007). We quantify uncertainties probabilistically, using

normal distributions 𝒩(𝜇, 𝜎2) and uniform distributions

𝒰(𝑎, 𝑏) to describe the perturbation vector 𝜹, which we

define relatively to the design vector 𝒙. For instance, 𝜹𝑖 =

0.01 𝒙𝑖 increases an entry of the design vector by one

percent. Quantifying the uncertainty then becomes a

matter of quantifying the underlying random

distributions.

Usually, uncertainties affect production processes on

different levels and with different magnitudes.

Therefore, each entry of the perturbation vector can be

separately defined by its own probability distribution, or

the whole perturbation vector is defined by a multivariate

random distribution. However, for the remainder of this

paper, we simply define all entries with the same

distribution, except otherwise specified.

Because the perturbation is defined relative, and we do

not want to introduce an intentional bias, the random

distributions are parameterized to have their center at

zero. This reduces the parameters of the distribution to a

single value: the variance 𝜎2 of the normal distribution

𝒩(0, 𝜎2) or the range 𝑟 of the uniform distribution

𝒰(−𝑟/2, +𝑟/2). We call this single parameter uncertainty

level 𝑢. For instance, using a uniformly distributed

uncertainty with an uncertainty level 𝑢 = 10−2 describes

the uncertainty using 𝒰(−0.5, +0.5).

3.3. Measuring Robustness

Evaluating a solution at a fixed uncertainty level does not

give a general measure of how a solution behaves under

a broader range of uncertainty. Instead, an interval of

uncertainty levels must be evaluated, with the lower and

upper bounds depending on the robustness requirements

of the optimization problem. If the production process is

not known, we use larger uncertainty ranges, e.g.

between 10−8 and 10−1. If the expected uncertainty is

known, the range should be set more precisely.

For each uncertainty level within the range, the objective

value (original objective without penalties) and the

constraint violations are calculated, yielding

progressions of the objective values and constraint

violations over increasing uncertainties. In the first step,

we analyze robustness only with respect to the

progression of constraint violations.

Because 𝜹 is a random variable, constraint violations are

not binary anymore, but measured as a probability

instead; therefore, for each constraint, a progression of

the violation probability is obtained with values between

zero and one. We aggregate these violation progressions

by calculating the sum of all violation probabilities at

each uncertainty level, resulting in a single violations

progression with each value between zero (no violations)

and the number of constraints (all constraints violated).

Although aggregating prevents analyzing which specific

constraints were violated, this is neglected for a general

measure of robustness.

Figure 3 shows an example of four different solutions for

the welded beam problem, with uncertainties ranging

from 10−8 to 1. The uncertainties on the x-axis are scaled

logarithmically to be able to observe effects on lower

uncertainty levels as well as on higher levels. Because we

name solutions by their literature origin, we use italic

font when referring to solutions to avoid confusion with

regular literature cites.

Figure 3: Progressions of violations over increasing

uncertainties for selected solutions of the welded beam

problem.

Typically, the violations begin to increase at different

uncertainty levels for different solutions, e.g. (Rocha and

Fernandes 2009) around 10−7 and (Ray and Liew 2003)

around 10−4. Robust solutions show influences only at

higher uncertainty, whereas fragile solutions are affected

earlier. The violations need not be strictly increasing, c.f.

(Azad and Fernandes 2011). This can be the case if the

solution violates constraints at lower or no uncertainty,

and sufficiently high uncertainty allows it to become

feasible again.

The series of violations also allows visual comparisons

of different solutions. First and most important, solutions

with a progression strictly lower than the progression of

an other solution are more robust since they violate less

constraints at all uncertainty levels, cf. (Akhtar et al.

2002) versus (Ray and Liew 2003). This allows ranking

solutions based on their robustness. In addition, the

violations-gap of two solutions at a specific uncertainty

level tells how much more robust a solution is.

Solutions with intersecting series cannot be compared

unambiguously, like (Rocha and Fernandes 2009) and

(Ray and Liew 2003). In such a case, unambiguity is

limited to non-intersecting intervals. The smaller the

interval, the more likely that multiple solutions can be

compared unambiguously.

3.4. Estimate Robustness Ranking

We still want to estimate which solution is more robust

over a large uncertainty interval, even though comparing

solutions unambiguously is not possible when their

violations progressions intersect. We calculate the area 𝑉

0.0

0.5

1.0

1.5

2.0

2.5

1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 1E-2 1E-1 1E+0
V

io
la

ti
o

n
s

Uncertainty (uniform)
(Ray and Liew 2003) (Rocha and Fernandes 2009)

(Akhtar et al. 2002) (Azad and Fernandes 2011)

under the curve of the violations series over the

uncertainty range. Because we do not know whether

higher or lower uncertainty is more important, we weight

them equally by using a log-scale on the uncertainty-axis,

as in Figure 3. We use the middle Riemann sum with a

log-scaled partition size to calculate the violation area

𝑉 = ∑
𝑣(𝒙, 𝑢𝑖) + 𝑣(𝒙, 𝑢𝑖−1)

2
(log 𝑢𝑖 − log 𝑢𝑖−1)

𝑛

𝑖=1

, (8)

where 𝑣(𝒙, 𝑢) yields the number of violated constraints

for a solution 𝒙 at the uncertainty level 𝑢 and 𝑛 is the

number of samples drawn from the uncertainty range.
We argue that solutions with a lower area of violations

are more robust over a larger uncertainty interval. This

gives a single, real-valued coefficient for robustness that

allows ordering and distance calculation.

However, this coefficient cannot be interpreted easily

because its magnitude depends on the uncertainty range.

By dividing the area by the range of the (logarithmized)

uncertainty interval, it can be directly related to values

calculated by a fixed uncertainty level. This relative area

of violations,

𝑉𝑟𝑒𝑙 =
𝑉

log 𝑢𝑚𝑎𝑥 − log 𝑢𝑚𝑖𝑛
 , (9)

can also be interpreted as weighted mean of violations at

multiple fixed uncertainty levels, where the weights are

the distances of two adjacent uncertainty levels.

With a single coefficient that describes robustness, we

are able to compare quality and robustness in a

scatterplot. This allows visualizing the tradeoff between

robustness and quality, as shown in Figure 4 with

selected solutions for the speed reducer problem. The

objective is calculated similarly by the area under the

objective progression. As the objective and the violations

are minimized, solutions at the lower left are preferable.

However, most solutions are either robust and low

quality, like (Mezura Montes et al. 2003), or high quality

and not robust, like (Bernardino et al. 2007). (Rocha and

Fernandes 2009) would be a reasonable tradeoff.

Figure 4: Comparison of objective and robustness of

different solutions of the speed reducer problem by a

scatterplot.

3.5. Results

In this section we present selected results from different

problems for an overview. The full analysis of all

problems with all solutions can be downloaded at

http://dev.heuristiclab.com/AdditionalMaterial#EMSS2016.

For all the presented results we used uniformly

distributed uncertainties, because it turned out the results

are similar to using normal distributions and uniform

distributions are easier to interpret due to the fixed

ranges.

Concerning quality, we observed two general behaviors,

demonstrated by Figure 5. First, uncertainty significantly

influences the quality only at higher uncertainty levels

with 𝑢 > 10−1; thus, at lower uncertainty, the order of

solutions by their quality does not change at all.

Secondly, the tendency whether quality increases or

decreases with increasing uncertainty is the same for all

solutions of a problem. Even the extend of the quality

changes is very similar. This concludes that uncertainty

does not significantly influence the order of solutions by

their quality.

Figure 5: Quality progression over uncertainty for

solutions of the speed reducer problem.

More interesting are the constraints violations, where we

start with the results of the tension compression spring

problem, since the results are easier to interpret. Figure 6

shows the violations progressions of selected solutions

between uncertainty level 10−10 and 10−1. Only solutions

that did not violate any constraints without uncertainty

were selected (see Table 2). Because there are effectively

no intersections between the progressions, an

unambiguous ranking for robustness can be determined.

Our own solution, found by a CMA-ES, starts violating

constraints early (𝑢 < 10−10) because the solution lies

very close to constraint boundaries. This also

demonstrates that solutions specifically optimized for

maximum quality are typically not robust. The other

solutions from the literature use less significant decimal

places thus are generally not as close to constraint

boundaries. The most robust solution from the selected

solutions in Figure 6 is (Coello Coello 2000); however,

when compared by quality, this solution performs worse

than all others, shown in the scatterplot in Figure 8. For

quality only, (Ray and Liew 2003) would be the better

choice. Choosing an appropriate compromise depends

mainly on the expected uncertainty and specifics of the

optimization problem.

(Akhtar et al. 2002)

(Bernardino et al. 2007)

(Gandomi et al. 2013) (Mezura Montes et al. 2003)

(Mezura-Montes et al. 2007)

(Ray and Liew 2003)

(Rocha and Fernandes 2009)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

2990 2995 3000 3005 3010 3015 3020

V
io

la
ti

o
n

s
(r

e
l.

 a
re

a)

Objective (rel. area) - minimized

2900

2950

3000

3050

1E-3 1E-2 1E-1 1E+0O
b

je
ct

iv
e

 -
m

in
im

iz
e

d

Uncertainty (uniform)

(Akhtar et al. 2002) (Gandomi et al. 2013)

(Mezura Montes et al. 2003) Present Study

http://dev.heuristiclab.com/AdditionalMaterial#EMSS2016

The progressions of violations for the pressure vessel

problem, shown in Figure 7, is more difficult to interpret.

First of all, intersecting progressions means that not all

solutions can be compared unambiguously, for instance

(Akhtar et al. 2002) and (Coello Coello 2000). Some

solutions, however, can be ranked unambiguously, for

instance (He and Wang 2007) is more robust on all levels

than (Bernardino et al. 2007), (Kaveh and Talatahari

2010) and the solution from this paper by the CMA-ES.

Similar to the results of the tension compression spring,

our solution is less robust than all other solutions.

Choosing the most robust solution in this case depends

on the expected uncertainty. If one expects small

uncertainties 𝑢 < 10−2, the most robust solution would be

(Akhtar et al. 2002). If the production system usually

inflicts high uncertainty (𝑢 > 2 ⋅ 10−2), (Coello Coello

2000) would be better. The estimated ranking over the

whole uncertainty range, as described earlier, can be

deduced from the scatterplot in Figure 9. The scatterplot

also shows that (Akhtar et al. 2002) is slightly more

robust than (Coello Coello 2000), but both have a

significantly worse quality than all other displayed

solutions.

Results for the speed reducer problem and welded beam

problem are omitted in this paper because the results are

similar to the pressure vessel problem.

Figure 6: Violations progression over uncertainty for selected solutions of the tension compression spring problem.

Figure 7: Violations progression over uncertainty for selected solutions of the pressure vessel problem.

Figure 8: Scatterplot showing quality vs. violations of

selected solutions for the tension compression spring

problem.

Figure 9: Scatterplot showing quality vs. violations of

selected solutions for the pressure vessel problem.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1E-10 1E-08 1E-06 1E-04 1E-02

V
io

la
ti

o
n

s

Uncertainty (uniform)

(Bernardino et al. 2007)

(Coello Coello 2000)

(He and Wang 2007)

(Mezura Montes et al. 2007)

(Ray and Liew 2003)

(Rocha and Fernandes 2009)

(Tomassetti 2010)

Present study

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1E-08 1E-06 1E-04 1E-02 1E+00

V
io

la
ti

o
n

s

Uncertainty (uniform)

(Akhtar et al. 2002)

(Bernardino et al. 2007)

(Bernardino et al. 2008)

(Coello Coello 2000)

(He and Wang 2007)

(Kaveh and Talatahari 2010)

(Rocha and Fernandes 2009)

Present study

(Bernardino et al. 2007)

(Coello Coello 2000)(He and Wang 2007)

(Mezura Montes et al. 2007)

(Ray and Liew 2003)

(Rocha and Fernandes 2009)

(Tomassetti 2010)

Present study

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.01275 0.01277 0.01279 0.01281

V
io

la
ti

o
n

s
(r

e
l.

 a
re

a)

Objective (rel. area) - minimized

(Akhtar et al. 2002)

(Bernardino et al. 2007)

(Bernardino et al. 2008)
(Coello Coello 2000)

(He and Wang 2007)

(Kaveh and Talatahari 2010)

(Rocha and Fernandes 2009)

Present study

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

6050 6150 6250 6350

V
io

la
ti

o
n

s
(r

e
l.

 a
re

a)

Objective (rel. area) - minimized

4. DISCUSSION

In this paper, we motivated robustness of solutions in

engineering design problems and demonstrated the

necessary steps to analyze uncertainty and robustness.

In the first part of this paper, we implemented popular

constrained optimization problems using HeuristicLab

and demonstrated different techniques for constraint

handling by transforming the problem into an

unconstrained optimization problem using penalties.

Then, we used the CMA-ES to find solutions for the

given problems and compared our solutions to solutions

from various literature sources.

In the second part of this paper, we introduced

uncertainty as an influence that causes small

perturbations to solution candidates. We quantified these

uncertainties with random distributions and introduced

uncertainty levels as a measure of the variance

uncertainty inflicts on the solutions. Then, we showed

that the robustness of solutions can be visualized and

compared using charts that plot the progression of

violated constraints over increasing uncertainty and

further demonstrated how the area under the progression

can be used to estimate a ranking of robustness when an

unambiguous ranking is not possible. Finally, we

illustrated that a solution’s quality and robustness often

oppose and a compromise must be picked.

A reasonable next step would be to consider uncertainty

directly during the solving and optimization process, to

search for solutions that are high quality and are robust.

This suggests using multi-objective optimization

techniques, which simultaneously optimize the objective

value of a solution as well as its robustness. However,

new questions arise, for instance, for which uncertainty

level a solution should be optimized for? Is it possible to

optimize it for a wider range of uncertainty? Which

(optimization) algorithms are to use for optimizing the

resulting multi-objective optimization problem?

Another interesting aspect for future research would be

the analytical prediction of robustness based on the

formal description of a constrained optimization

problem. Our research suggested that for the same

optimization problem, increasing uncertainty has the

same effect on the quality for all solutions. Those

correlations could also be predicted analytically by

analyzing the objective function in detail. Similarly, the

robustness of a solution could be predicted analytically

by analyzing the constraints, how close a solution is to

those constraints and how perturbation would increase

the likelihood that those constraints will be violated.

For a broader empirical confirmation of our findings,

additional engineering design optimization problems

could be studied. A real world test scenario would also

be very interesting.

We believe that uncertainty, and the goal to find robust

solutions, will become a major factor in engineering

problems. Thus, the study of techniques and algorithms

that are able to find robust solutions while maintaining

high quality will continue and increase.

ACKNOWLEDGMENTS

The work described in this paper was done within the

COMET Project #843551 Advanced Engineering Design

Automation (AEDA) and COMET Project #843532

Heuristic Optimization in Production and Logistics

(HOPL), both funded by the Austrian Research

Promotion Agency (FFG).

APPENDIX A: BENCHMARK INSTANCES

A.1 Pressure Vessel Problem

Minimize the fabrication costs of a cylindrical pressure

vessel given by the thickness of the pressure vessel (𝑥1),

the thickness of the head (𝑥2), the inner radius of the

vessel (𝑥3) and the length of the vessel without heads

(𝑥4), shown in Figure 10.

Figure 10: Schematic illustration of a pressure vessel and

its parameters. Image adapted from Cagnina et al. (2008).

The pressure vessel problem is formally described as
𝑓(𝒙) = 0.6224𝑥1𝑥3𝑥4 + 1.7781𝑥2𝑥3

2 + 3.1661𝑥1
2𝑥4

+ 19.84𝑥1
2𝑥3

where
𝒙 = (𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ ℝ4

𝑥1 = {0.0625𝑡 | 𝑡 ∈ ℤ ∩ [1; 99]}
𝑥2 = {0.0625𝑡 | 𝑡 ∈ ℤ ∩ [1; 99]}
𝑥3 ∈ [10; 200] 𝑥4 ∈ [10; 200]

subject to 𝑔𝑗(𝒙) ≤ 0 with

𝑔1(𝒙) = −𝑥1 + 0.0193𝑥3 𝑔2(𝒙) = −𝑥2 + 0.00954𝑥3

𝑔3(𝒙) = −𝜋𝑥3
2𝑥4 −

4

3
𝜋𝑥3

3 + 1,296,000 𝑔4(𝒙) = 𝑥4 − 240

A.2 Speed Reducer Problem

Minimize the weight of a speed reducer given by the gear

face width (𝑥1), the teeth module (𝑥2), the number of

pinion teeth (𝑥3), the lengths of the shafts between

bearings (𝑥4, 𝑥5) and the diameters of the shafts (𝑥6, 𝑥7),

shown in Figure 11. The speed reducer is constrained to

bending stress of the gear teeth, surface stress, transverse

deflection of the shafts and stress in the shafts.

Figure 11: Schematic illustration of a speed reducer and

its parameters. Image adapted from Townsend (2016).

The speed reducer problem is formally described as
𝑓(𝒙) = 0.7854𝑥1𝑥2

2(3.3333𝑥3
2 + 14.9334𝑥3 − 43.0934)

− 1.508𝑥1(𝑥6
2 + 𝑥7

2) + 7.4777(𝑥6
3 + 𝑥7

3)

+ 0.7854(𝑥4𝑥6
2 + 𝑥5𝑥7

2)
where

𝒙 = (𝑥1, 𝑥2, … , 𝑥7) ∈ ℝ7
𝑥1 ∈ [2.6; 3.6] 𝑥2 ∈ [0.7; 0.8] 𝑥3 ∈ ℤ ∩ [17; 28]

𝑥4 ∈ [7.3; 8.3] 𝑥5 ∈ [7.3; 8.3] 𝑥6 ∈ [2.9; 3.9]

𝑥7 ∈ [5; 5.5]

subject to 𝑔𝑗(𝒙) ≤ 0 with

𝑔1(𝒙) =
27

𝑥1𝑥2
2𝑥3

− 1 𝑔2(𝒙) =
397.5

𝑥1𝑥2
2𝑥3

2 − 1

𝑔3(𝒙) =
1.93𝑥4

3

𝑥2𝑥3𝑥6
4 − 1 𝑔4(𝒙) =

1.93𝑥5
3

𝑥2𝑥3𝑥7
4 − 1

𝑔5(𝒙) =
1

110𝑥6
3

√(
745𝑥4

𝑥2𝑥3
)

2

+ 16.9 ⋅ 106 − 1

𝑔6(𝒙) =
1

85𝑥7
3

√(
745𝑥5

𝑥2𝑥3
)

2

+ 157.5 ⋅ 106 − 1

𝑔7(𝒙) =
𝑥2𝑥3

40
− 1 𝑔8(𝒙) =

5𝑥2

𝑥1
− 1

𝑔9(𝒙) =
𝑥1

12𝑥2
− 1 𝑔10(𝒙) =

1.5𝑥6 + 1.9

𝑥4
− 1

𝑔11(𝒙) =
1.1𝑥7 + 1.9

𝑥5
− 1

A.3 Tension/Compression Spring Problem

Minimize the weight of a coil spring under a constant

tension/compression load given by the wire diameter

(𝑥1), the winding diameter (𝑥2) and the number of active

coils (𝑥3), shown in Figure 12.

Figure 12: Schematic illustration of a

tension/compression spring and its parameters. Image

adapted from Bernardino et al. (2007).

The tension/compression spring problem is formally

described as
𝑓(𝒙) = (𝑥3 + 2)𝑥2𝑥1

2
where

𝒙 = (𝑥1, 𝑥2, 𝑥3) ∈ ℝ3

𝑥1 ∈ [0.05; 2] 𝑥2 ∈ [0.25; 1.3] 𝑥3 ∈ [2; 15]

subject to 𝑔𝑗(𝒙) ≤ 0 with

𝑔1(𝒙) = 1 −
𝑥2

3𝑥3

71,785𝑥1
4

𝑔2(𝒙) =
4𝑥2

2 − 𝑥1𝑥2

12,566(𝑥2𝑥1
3 − 𝑥1

4)
+

1

5,108𝑥1
2 − 1

𝑔3(𝒙) = 1 −
140.45𝑥1

𝑥2
2𝑥3

𝑔4(𝒙) =
𝑥1 + 𝑥2

1.5
− 1

A.4 Welded Beam Problem

Minimize the fabrication costs of a welded beam given

by the thickness of the weld (𝑥1), the length of the welded

joint (𝑥2), the width of the beam (𝑥3) and the thickness

of the beam (𝑥4), shown in Figure 13. The welded beam

is subject to constraints on shear stress (𝜏), bending stress

in the beam (𝜎), buckling load on the bar (𝑃𝑐) and end

deflection of the beam (𝛿).

Figure 13: Schematic illustration of a welded beam and

its parameters. Image adapted from Cagnina et al. (2008).

The welded beam problem is formally described as
𝑓(𝒙) = 1.10471𝑥1

2𝑥2 + 0.04811𝑥3𝑥4(14 + 𝑥2)
where

𝒙 = (𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ ℝ4
𝑥1 ∈ [0.1; 2] 𝑥2 ∈ [0.1; 10] 𝑥3 ∈ [0.1; 10] 𝑥4 ∈ [0.1; 2]
subject to 𝑔𝑗(𝒙) ≤ 0 with

𝑔1(𝒙) = 𝜏(𝑥) − 𝜏max 𝑔2(𝒙) = 𝜎(𝑥) − 𝜎max
𝑔3(𝒙) = 𝑥1 − 𝑥4 𝑔4(𝒙) = 0.125 − 𝑥1
𝑔5(𝒙) = 𝛿(𝑥) − 𝛿𝑚𝑎𝑥 𝑔6(𝒙) = 𝑃 − 𝑃𝑐(𝑥)

and

𝜏(𝒙) = √𝜏1
2 + 2𝜏1𝜏2

𝑥2

2𝑅
+ 𝜏2

2 𝜏1 =
𝑃

√2𝑥1𝑥2

𝜏2 =
𝑀𝑅

𝐽

𝑀 = 𝑃 (𝐿 +
𝑥2

2
) 𝑅 = √

𝑥2
2

4
+ (

𝑥1 + 𝑥3

2
)

2

𝐽 = 2
𝑥1𝑥2

√2
(

𝑥2
2

12
+ (

𝑥1 + 𝑥3

2
)

2

)

𝜎(𝒙) =
6𝑃𝐿

𝑥4𝑥3
2 𝛿(𝒙) =

4𝑃𝐿3

𝐸𝑥3
3𝑥4

𝑃𝑐(𝒙) =
4.013√𝐸𝐺𝑥3

2𝑥4
6

36
𝐿2

(1 −
𝑥3

2𝐿
√

𝐸

4𝐺
)

𝜏max = 13,600 psi 𝜎max = 30,000 psi 𝛿𝑚𝑎𝑥 = 0.25 in

𝑃 = 6,000 lb 𝐺 = 12 ⋅ 106 psi 𝐸 = 30 ⋅ 106 psi

𝐿 = 14 in

REFERENCES

Akay B, Karaboga D (2010) Artificial bee colony

algorithm for large-scale problems and engineering

design optimization. Journal of Intelligent

Manufacturing 23(4):1001–1014

Akhtar S, Tai K, Ray T (2002) A socio-behavioural

simulation model for engineering design

optimization. Engineering Optimization

34(4):341–354

Azad MAK, Fernandes EM (2011) Modified

Differential Evolution Based on Global

Competitive Ranking for Engineering Design

Optimization Problems. In: Computational Science

and its Applications, vol 6784, pp 245–260

Belegundu AD (1982) Study of mathematical

programming methods for structural optimization.

PhD thesis

Bernardino HS, Barbosa HJ, Lemonge AC (2007) A

hybrid genetic algorithm for constrained

optimization problems in mechanical engineering.

In: IEEE Congress on Evolutionary Computation,

pp 646–653

Bernardino HS, Barbosa HJ, Lemonge AC, Fonseca LG

(2008) A new hybrid AIS-GA for constrained

optimization problems in mechanical engineering.

In: IEEE Congress on Evolutionary Computation,

pp 1455–1462

Beyer H, Sendhoff B (2007) Robust optimization – A

comprehensive survey. Computer Methods in

Applied Mechanics and Engineering 196(33-

34):3190–3218

Cagnina LC, Esquivel SC, Coello Coello CA (2008)

Solving engineering optimization problems with

the simple constrained particle swarm optimizer.

Informatica 32(3):319–326

Coello Coello CA (2000) Use of a self-adaptive penalty

approach for engineering optimization problems.

Computers in Industry 41(2):113–127

Coello Coello CA (2002) Theoretical and numerical

constraint-handling techniques used with

evolutionary algorithms: A survey of the state of

the art. Computer Methods in Applied Mechanics

and Engineering 191(11-12):1245–1287

Golinski J (1973) An adaptive optimization system

applied to machine synthesis. Mechanism and

Machine Theory 8(4):419–436

Hansen N (2005) The CMA evolution strategy: A

tutorial. Vu le 29

Hansen N, Müller SD, Koumoutsakos P (2003)

Reducing the Time Complexity of the

Derandomized Evolution Strategy with Covariance

Matrix Adaptation (CMA-ES). Evolutionary

Computation 11(1):1–18

He Q, Wang L (2007) An effective co-evolutionary

particle swarm optimization for constrained

engineering design problems. Engineering

Applications of Artificial Intelligence 20(1):89–99

He S, Prempain E, Wu QH (2004) An improved particle

swarm optimizer for mechanical design

optimization problems. Engineering Optimization

36(5):585–605

Hu X, Eberhart RC, Shi Y (2003) Engineering

optimization with particle swarm. In: 2003 IEEE

Swarm Intelligence Symposium, pp 53–57

Kaveh A, Talatahari S (2009) Engineering optimization

with hybrid particle swarm and ant colony

optimization. Asian journal of civil engineering

10(6):611–628

Kaveh A, Talatahari S (2010) An improved ant colony

optimization for constrained engineering design

problems. Engineering Computations 27(1):155–

182

Lemonge AC, Barbosa HJ, Borgesc CC, Silva FB

(2010) Constrained optimization problems in

mechanical engineering design using a real-coded

steady-state genetic algorithm. Mecánica

Computacional 3329(95):9287–9303

Mezura Montes E, Coello Coello CA, Landa-Becerra R

(2003) Engineering optimization using simple

evolutionary algorithm. In: 15th IEEE International

Conference on Tools with Artificial Intelligence,

pp 149–156

Mezura Montes E, Coello Coello CA, Velázquez-Reyes

J, Muñoz-Dávila L (2007) Multiple trial vectors in

differential evolution for engineering design.

Engineering Optimization 39(5):567–589

Ragsdell KM, Phillips DT (1976) Optimal Design of a

Class of Welded Structures Using Geometric

Programming. Journal of Engineering for Industry

98(3):1021

Ray T, Liew KM (2003) Society and civilization: An

optimization algorithm based on the simulation of

social behavior. IEEE Transactions on

Evolutionary Computation 7(4):386–396

Rocha AMA, Fernandes EM (2009) Hybridizing the

electromagnetism-like algorithm with descent

search for solving engineering design problems.

International Journal of Computer Mathematics

86(10-11):1932–1946

Sandgren E (1988) Nonlinear integer and discrete

programming in mechanical design. Proceedings of

the ASME design technology conference

Scheibenpflug A, Beham A, Kommenda M, Karder J,

Wagner S, Affenzeller M (2015) Simplifying

Problem Definitions in the HeuristicLab

Optimization Environment. In: Companion

Publication of the 2015 Genetic and Evolutionary

Computation Conference, pp 1101–1108

Schumer M, Steiglitz K (1968) Adaptive step size

random search. IEEE Trans. Automat. Contr.

13(3):270–276

Tomassetti G (2010) A cost-effective algorithm for the

solution of engineering problems with particle

swarm optimization. Engineering Optimization

42(5):471–495

Townsend JC (2016) Golinski's Speed Reducer.

http://www.eng.buffalo.edu/Research/MODEL/md

o.test.orig/class2prob4/descr.html

Wagner S, Kronberger G, Beham A, Kommenda M,

Scheibenpflug A, Pitzer E, Vonolfen S, Kofler M,

Winkler S, Dorfer V, Affenzeller M (2014)

Architecture and Design of the HeuristicLab

Optimization Environment. In: Advanced methods

and applications in computational intelligence, 1st

edition, vol 6. Springer, New York, pp 197–261

Zhang M, Luo W, Wang X (2008) Differential

evolution with dynamic stochastic selection for

constrained optimization. Information Sciences

178(15):3043–3074

