
ANALYSIS OF UNCERTAINTY IN 

ENGINEERING DESIGN OPTIMIZATION PROBLEMS 

 

 
 

 

Philipp Fleck(a), Michael Kommenda(b), Michael Affenzeller(c), Thorsten Prante(d) 

 

 
(a), (b), (c) Heuristic and Evolutionary Algorithms Laboratory, 

University of Applied Sciences Upper Austria, Softwarepark 11, 4232 Hagenberg i. M., Austria 
(b), (c) Institute for Formal Verification, 

Johannes Kepler University, Altenberger Straße 69, 4040 Linz, Austria 
(d) V-Research GmbH, 

CAMPUS V, Stadtstraße 33, 6850 Dornbirn 

 
(a)philipp.fleck@fh-hagenberg.at, (b)michael.kommenda@fh-hagenberg.at,  

(c)michael.affenzeller@fh-hagenberg.at, (d)thorsten.prante@v-research.at 

 

 

 

ABSTRACT 

In this paper, we analyze popular benchmark instances in 

the field of engineering design optimization regarding 

the robustness of published solutions. First, we 

implement selected benchmark problems with 

HeuristicLab and show the advantages of having a 

framework that enables rapid prototyping for 

optimization and analysis. Then, we show that many 

solutions quickly become infeasible when considering 

uncertainty like production inaccuracies. Based on these 

findings, we motivate why robust solutions for 

engineering design are important and present methods 

for measuring, identifying and visualizing robustness. 

Finally, we present how solutions can be compared and 

selected using a novel robustness measure. 

 

Keywords: engineering design optimization, constraint 

handling, uncertainty, robustness  

 

1. INTRODUCTION 

The increasing complexity of today’s engineering tasks 

have made computer systems an omnipresent part of the 

engineering design process. These tools help human 

experts to make meaningful design choices in order to 

develop products or systems that satisfy a complex set of 

requirements. Particularly, finding the optimal set of 

decisions for a given engineering design problem is an 

ongoing challenge.  

Engineering design problems are often formulated as 

constrained optimization problems with a design vector 

𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ ℝ𝑛, an objective function 𝑓(𝒙), 

inequality constraints 𝑔𝑗(𝒙) ≤ 0 and equality constraints 

ℎ𝑘(𝒙) = 0 with 𝑓, 𝑔𝑗 , ℎ𝑘: ℝ𝑛 → ℝ. The range of each 

design value 𝑥𝑖 is either given explicitly, as 𝑚𝑖𝑛𝑖 ≤ 𝑥𝑖 ≤

𝑚𝑎𝑥𝑖, or as inequality constraints; for example 1 ≤ 𝑥1 ≤

5 is equivalent to 𝑔1 = 1 − 𝑥1 ≤ 0 and 𝑔2 = 𝑥1 − 5 ≤ 0. 

 

A variety of benchmark engineering design optimization 

problems exists for evaluating and comparing different 

optimization techniques. In this paper, we cover four well 

studied benchmark problems, with formal descriptions of 

each problem given in the Appendix: 

 

 Pressure Vessel (PV) (Sandgren 1988) 

 Speed Reducer (SR) (Golinski 1973) 

 Tension/Compression Spring (TCS) 

(Belegundu 1982) 

 Welded Beam (WB) (Ragsdell and Phillips 

1976)  

 

We show how to implement the selected benchmark 

problems with the open source optimization framework 

HeuristicLab (Wagner et al. 2014) and demonstrate the 

advantages and simplicity of using a framework for rapid 

prototyping and  compare our solutions to solutions from 

relevant literature. Then, we discuss uncertainty and 

present methods to quantify uncertainty and finally, we 

introduce analysis methods to compare the robustness of 

different solutions.  

 

2. OPTIMIZATION OF ENGINEERING DESIGN 

PROBLEMS 

 

2.1. Solving Engineering Design Optimization 

Problems with HeuristicLab 

HeuristicLab (Wagner et al. 2014) is an open source 

framework for heuristic optimization that is freely 

available at http://dev.heuristiclab.com and offers a wide 

range of popular optimization algorithms and benchmark 

problems. Users can easily implement their own 

optimization problems, using the built-in scripting 

environment, which allows specifying the objective 

function of optimization problems in C# code directly in 

HeuristicLab (Scheibenpflug et al. 2015). 
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To implement a new problem, the user has to create a 

Programmable Problem (single-objective), where some 

exemplary code is already provided. After having 

implemented the problem, the code is compiled at 

runtime and the problem can be solved using one of the 

many algorithms. A fully specified optimization problem 

requires three parts that the user has to implement (for 

illustration see Figure 1): 

 

1. Specification whether the objective should be 

maximized or minimized, which is done by 

implementing the Maximization property. 

2. An appropriate Encoding for the optimization 

problem. Code for popular encodings is already 

provided in the Initialize method, for instance 

the RealVectorEncoding.  

3. The objective function, which is implemented 

in the Evaluate method and has to return the 

quality of a given solution. 

 

Different forms of evaluating the objective are possible, 

ranging from implementing code for a simple analytical 

model to executing a full-scaled simulation. The 

benchmark optimization problems used in this paper 

specify analytical objective functions and are therefore 

quite easy to implement. For instance, the objective 

function for the tension/compression spring problem, 

 
𝑓(𝒙) = (𝑥3 + 2) ⋅ 𝑥2 ⋅ 𝑥1

2 ,                     (1) 

 

translates to the following source code (without 

constraint handling): 

 
public double Evaluate( 

    Individual ind, IRandom r) { 

  var x = ind.RealVector(); 

  double x1=x[0], x2=x[1], x3=x[2]; 

  return (x3 + 2) * x2 * x1*x1; 

} 

 

Optionally, the Analyze method in the Programmable 

Problem can be implemented to gather additional 

information during the optimization, for instance 

recording the best feasible solution found. Figure 1 

shows a screenshot of a fully specified optimization 

problem, including constraint handling.  

Furthermore, HeuristicLab can be extended by 

developing new plugins, which allows the user to 

implement new encodings or new algorithms (see 

Scheibenpflug et al. (2015) for more details). 

 

2.2. Constraint Handling 

Many optimization problems specify different kinds of 

constraints. However, optimization algorithms usually 

do not handle constraints explicitly and require them 

being incorporated into the objective function. A 

common way of handling constraints are penalty 

functions, where the original constrained objective 

function is transformed into an unconstrained objective 

function by adding a penalty for infeasible solutions 

(Coello Coello 2002).  

 

 
Figure 1: Screenshot showing the implementation of the 

tension/compression spring problem with HeuristicLab’s 

integrated scripting environment. 

 

A new unconstrained objective function 𝜙(𝒙) is often 

formulated as 

 

  𝜙(𝒙) = 𝑓(𝒙) ± (∑ 𝑟𝑗𝐺𝑗 + ∑ 𝑐𝑘𝐻𝑘
𝑘=1𝑗=1

)      (2) 

 

where 𝑟𝑗 and 𝑐𝑘 are constants called penalty factors. 𝐺𝑗 

and 𝐻𝑘 are functions of the inequality and equality 

constraints 𝑔𝑗(𝒙) and ℎ𝑘(𝒙) respectively and are 

commonly defined as 

 

𝐺𝑗 = max(0, 𝑔𝑗(𝒙))
𝛽

and 𝐻𝑘 = |ℎ𝑘(𝒙)|𝛾    (3) 

 

where 𝛽 and 𝛾 are usually 1 or 2. The penalties are added 

if the problem is minimized, or subtracted if maximized. 

All problems solved in this paper are minimization 

problems with only inequality constraints; further, we 

simplify problem specification by only a single penalty 

value 𝑟. The resulting objective function used further in 

this paper is 

 

𝜙(𝒙) = 𝑓(𝒙) + 𝑟 ∑ max(0, 𝑔𝑗(𝒙))
𝑗=1

  .         (4) 

 

For each optimization problem, the penalty factor 𝑟 is 

determined by obtaining a typical objective value for this 

problem and multiplying it by a factor to make it 

intentionally worse. We obtained the typical objective 

value by calculating the mean of 10,000 random 

solutions and then multiplying it by 5. For each problem, 

the resulting penalty value is stated in Table 1. 

 

2.3. Single-Objective Optimization 

We use the Covariance Matrix Adaption Evolution 

Strategy (CMA-ES) to solve the engineering design 

optimization problems. The CMA-ES is a population-



based evolutionary algorithm, specifically designed for 

real-valued, single objective optimization problems 

(Hansen et al. 2003). 

The basic idea of the algorithm is to sample promising 

areas in the search space with a multivariate normal 

distribution 𝒩(𝒎, 𝜎2𝐶), defined by the mean vector 𝒎 ∈

ℝ𝑛 and the covariance matrix 𝜎2𝐶 ∈ ℝ𝑛×𝑛 where 𝜎 ∈ ℝ 

defines an additional scaling factor (called the step-size). 

Figure 2 illustrates different types of distributions by 

different covariance matrices. 

 

 
Figure 2: Different distributions given by the same mean 

vector but different covariance matrices, symbolized by 

density-ellipsoids: The identity covariance matrix 

resulting in circular distributions (left). A diagonal 

covariance matrix resulting in axis-aligned distributions 

(middle). A symmetric, positive-definite matrix capable 

of describing axis-independent distributions (right). The 

background shows the gradients of the search space 

towards the optimum in the upper right. Figure adapted 

from Hansen (2005). 

 

The algorithm maintains and updates the parameters of 

the multivariate normal distribution so that it increases 

the probability of moving towards promising areas in the 

search space. Creating new sample points and updating 

the parameters is done iteratively, until a termination 

criteria is met. The following briefly describes the main 

parts of the CMA-ES. An extensive description is given 

in Hansen et al. (2003). 

 

(1) In the beginning, the first mean vector 𝒎 is 

determined by randomly creating 𝜆 vectors and 

calculating their mean. The initial step-size 𝜎 is 

given by the user, usually as a vector to setup axis-

scaling for each dimension. The matrix 𝐶 is 

initialized with the identity matrix. 

(2) At each iteration, 𝜆 samples are created with the 

multivariate normal distribution 𝒩(𝒎, 𝜎2𝐶), with 

the mean vector 𝒎 describing the current center of 

search and the covariance matrix 𝜎2𝐶 describing the 

form of the distribution and thus the search direction. 

The step-size 𝜎 controls the scale, therefore the 

“speed” the algorithm moves through the search 

space.  

(3) The solutions are evaluated according to the given 

objective function and sorted based on their 

objective value. 

(4) The weighted sum of the 𝜇 best solutions is 

calculated to determine the new mean vector 𝒎. The 

weights, which must sum to one, are either equal or 

decrease to favor better solutions. 

(5) The step-size 𝜎 is updated based on the 1/5th success 

rule already used in a standard evolution strategy 

(Schumer and Steiglitz 1968). The matrix 𝐶 is 

updated based on the gradient of the quality, 

approximated by the sampled solutions. 

 

2.4. Results 

We implemented and optimized the four selected 

engineering design optimization problems with the 

techniques described in the previous sections. For all 

problems we used the CMA-ES with a population size 

(𝜆) of 50 and 25 individuals (𝜇) for calculating the new 

mean (log-scaled weighting). After a maximum of a 100 

iterations, the algorithm terminates. Table 1 shows the 

initial step-size 𝜎 and penalty factor 𝑟 for each problem. 

 

Table 1: Parameters used for the different problems. 
Probl. Initial 𝜎 𝑟 

PV (2, 2, 63, 63) 65000 

SR (0.33, 0.033, 3.67, 0.33, 0.33, 0.33, 0.167) 20000 

TCS (0.65, 0.35, 4.33) 50 

WB (0.63, 3.3, 3.3, 0.63) 70 

 

Table 2 contains a comparison between our results and 

the results of various literature, showing that the results 

of the CMA-ES are equal or close to the best-found 

solutions from the literature. This demonstrates that 

common benchmark optimization problems in the fields 

of engineering design can be solved with little 

implementation effort, when using an appropriate 

framework that allows easy problem specification and 

offers proper optimization algorithms. Otherwise, 

implementing the problem specification and 

optimization algorithms can be time consuming. 

While recalculating the quality of the solutions from the 

literature for validation, we observed that several 

solutions slightly violate some of the constraints. We 

suspect that the published solutions are rounded to some 

degree, causing the small infeasibilities in our 

calculations. Hence, we introduced a tolerance value for 

evaluating inequality constraints, so that 𝑔𝑗(𝒙) ≤ 10𝜖, to 

determine how closely the constraints are violated. Table 

2 includes the number of violated constraints per solution 

and states the tolerance value so that the solution 

becomes feasible. Not all authors reported solutions for 

all four problems we analyze, thus some entries in the 

table are empty.  

For readability, the numbers in Table 2 are rounded, 

yielding solutions with the same quality but different 

constraint violations. A detailed table with the precise 

qualities and the all solution vectors is available online at 

http://dev.heuristiclab.com/AdditionalMaterial#EMSS2016. 

Additionally, all implemented problems and fully 

configured optimization algorithms along with the 

algorithm results presented in this paper are also 

available under the same URL. 

For some problems multiple versions exist, e.g. Welded 

Beam, thus we only compare results that were solved 

using the exact same problem specification. The exact 

specifications used in this paper can be found in the 

Appendix. 

http://dev.heuristiclab.com/AdditionalMaterial#EMSS2016


Table 2: Results of selected engineering design problems solved by the CMA-ES (present study) compared with other 

selected literature solutions. “Quality” shows the quality (rounded) of the best solution found, “V” shows the number of 

violated constraints for that solution and “𝜖” the tolerance factor (in 10𝜖) to make the solution feasible. The best and best  

feasible solution are marked bold. 

Reference 
Pressure Vessel Speed Reducer Tension/C. Spring Welded Beam 

Quality V 𝜖 Quality V 𝜖 Quality V 𝜖 Quality V 𝜖 

Present study 6059.71 0  2994.47 0  0.0126652 0  2.38096 0  

(Akay and Karaboga 2010) 6059.71 1 -8 2997.06 1 -6 0.0126650 1 -4    

(Akhtar et al. 2002) 6171.00 0  3008.08 0     2.44260 0  

(Azad and Fernandes 2011) 6059.53 2 0 2994.32 2 -3 0.0126640 2 -4 2.38081 1 -4 

(Bernardino et al. 2007) 6060.37 0  2994.47 1 -6 0.0126680 0  2.38122 0  

(Bernardino et al. 2007) 6060.14 0  2994.47 0  0.0126660 0  2.38125 0  

(Bernardino et al. 2008) 6059.85 0  2996.35 1 -6 0.0126660 1 -5 2.38144 0  

(Bernardino et al. 2008) 6065.82 0  2996.35 1 -6 0.0126838 0  2.38335 0  

(Bernardino et al. 2008) 6832.58 1 1 2996.35 1 -6 0.0126790 0  2.59610 0  

(Cagnina et al. 2008) 6059.71 1 -1 2996.35 2 -6 0.0126650 1 -4    

(Coello Coello 2000) 6288.74 0     0.0127048 0     

(He and Wang 2007) 6061.08 0     0.0126747 0     

(He et al. 2004) 6059.71 1 -10    0.0126653 1 -7 2.38096 0  

(Hu et al. 2003) 6059.13 1 -7    0.0126661 1 -8    

(Kaveh and Talatahari 2009) 6059.09 1 -4    0.0126391 1 -2    

(Kaveh and Talatahari 2010) 6059.73 0     0.0126432 1 -2    

(Lemonge et al. 2010) 6059.72 1 1 2996.35 1 -6 0.0126790 1 -5 2.38124 0  

(Mezura Montes et al. 2003) 6059.71 1 1 3025.01 0  0.0126650 0     

(Mezura Montes et al. 2007) 6059.70 2 1 2996.36 0  0.0126980 0     

(Ray and Liew 2003)    2994.74 0  0.0126692 0  2.38543 0  

(Rocha and Fernandes 2009) 6071.17 0  2994.37 0  0.0126680 0  2.38627 0  

(Rocha and Fernandes 2009) 6072.23 0  2995.80 0  0.0126670 0  2.43162 0  

(Tomassetti 2010) 6059.71 1 -8 2996.35 1 -6 0.0126650 0     

(Zhang et al. 2008) 7197.70 1 1 2994.47 0  0.0126652 1 -8 2.38096 0  

 

3. ROBUSTNESS IN ENGINEERING DESIGN 

Our results in Section 2.4 show that small deviations can 

make solutions infeasible. In this section, we generalize 

these small deviations by applying uncertainty in various 

stages of the engineering design process to observe how 

the final quality and feasibility of solutions changes. Our 

goal is to find robust solutions that stay feasible for 

increasing uncertainty while maintaining high quality. 

To analyze robustness, we first define different types of 

uncertainty and describe how to quantify them. Then, we 

introduce methods for measuring and visualizing 

robustness that allows comparing different solutions. 

Finally, we introduce a novel measure that allows 

ranking of solutions based on their robustness. 

 

3.1. Uncertainty characterization 

Uncertainty summarizes indirect influences that can 

occur during the engineering design process and are not 

controllable by the design vector 𝒙. Beyer and Sendhoff 

(2007) describe four types of uncertainty, based on which 

aspect of evaluation is influenced. 

 

A) Changing environmental and operating conditions 

summarize controllable influences of the evaluation 

process that are not reflected in the design variables. 

Typical influences are environmental settings like 

operating temperature.

The objective function 𝑓 becomes a function of the 

design vector 𝒙 and an additional parameter vector 𝜶 that 

quantifies all additional settings of the system, 

 
𝑓 = 𝑓(𝒙, 𝜶) .                                      (5) 

 

B) Production tolerances and actuator imprecision 

summarize uncontrollable influences on the design 

vector. For instance, machine imprecision when actually 

manufacturing a product described by the design vector. 

Formally, a perturbation vector 𝜹 is added on the design 

vector, resulting in an objective function 

 
𝑓 = 𝑓(𝒙 + 𝜹, 𝜶) ,                               (6) 

 

where the perturbation is absolute or relative (𝜹 = 𝝐 ∗ 𝒙). 

 

C) Uncertainty in the system output occurs due to 

imprecise measuring of the output. The observed output 

differs from the actual evaluation output, which is 

formally described by a random function 

 

𝑓 = 𝑓[𝑓(𝒙 + 𝜹, 𝜶)] .                         (7) 

 

D) Feasibility uncertainties summarize effects on 

constraint satisfaction. Technically, this is not a separate 

type of uncertainty and is often modeled as type A or type 

B. 

 

 

 



In the remainder of this paper, we only use uncertainty 

type B, production tolerances, because they can be 

specified in the same way for all engineering design 

problems and they are best suited to demonstrate 

uncertainty in this paper. 

 

3.2. Quantifying Uncertainty 

Uncertainties can be quantified deterministically, 

probabilistically or possibilistically (Beyer and Sendhoff 

2007). We quantify uncertainties probabilistically, using 

normal distributions 𝒩(𝜇, 𝜎2) and uniform distributions 

𝒰(𝑎, 𝑏) to describe the perturbation vector 𝜹, which we 

define relatively to the design vector 𝒙. For instance, 𝜹𝑖 =

0.01 𝒙𝑖 increases an entry of the design vector by one 

percent. Quantifying the uncertainty then becomes a 

matter of quantifying the underlying random 

distributions. 

Usually, uncertainties affect production processes on 

different levels and with different magnitudes. 

Therefore, each entry of the perturbation vector can be 

separately defined by its own probability distribution, or 

the whole perturbation vector is defined by a multivariate 

random distribution. However, for the remainder of this 

paper, we simply define all entries with the same 

distribution, except otherwise specified. 

Because the perturbation is defined relative, and we do 

not want to introduce an intentional bias, the random 

distributions are parameterized to have their center at 

zero. This reduces the parameters of the distribution to a 

single value: the variance 𝜎2 of the normal distribution 

𝒩(0, 𝜎2) or the range 𝑟 of the uniform distribution 

𝒰(−𝑟/2, +𝑟/2). We call this single parameter uncertainty 

level 𝑢. For instance, using a uniformly distributed 

uncertainty with an uncertainty level 𝑢 = 10−2 describes 

the uncertainty using 𝒰(−0.5, +0.5). 

 

3.3. Measuring Robustness 

Evaluating a solution at a fixed uncertainty level does not 

give a general measure of how a solution behaves under 

a broader range of uncertainty. Instead, an interval of 

uncertainty levels must be evaluated, with the lower and 

upper bounds depending on the robustness requirements 

of the optimization problem. If the production process is 

not known, we use larger uncertainty ranges, e.g. 

between 10−8 and 10−1. If the expected uncertainty is 

known, the range should be set more precisely.  

For each uncertainty level within the range, the objective 

value (original objective without penalties) and the 

constraint violations are calculated, yielding 

progressions of the objective values and constraint 

violations over increasing uncertainties. In the first step, 

we analyze robustness only with respect to the 

progression of constraint violations.  

Because 𝜹 is a random variable, constraint violations are 

not binary anymore, but measured as a probability 

instead; therefore, for each constraint, a progression of 

the violation probability is obtained with values between 

zero and one. We aggregate these violation progressions 

by calculating the sum of all violation probabilities at 

each uncertainty level, resulting in a single violations 

progression with each value between zero (no violations) 

and the number of constraints (all constraints violated). 

Although aggregating prevents analyzing which specific 

constraints were violated, this is neglected for a general 

measure of robustness. 

Figure 3 shows an example of four different solutions for 

the welded beam problem, with uncertainties ranging 

from 10−8 to 1. The uncertainties on the x-axis are scaled 

logarithmically to be able to observe effects on lower 

uncertainty levels as well as on higher levels. Because we 

name solutions by their literature origin, we use italic 

font when referring to solutions to avoid confusion with 

regular literature cites. 

 

 
Figure 3: Progressions of violations over increasing 

uncertainties for selected solutions of the welded beam 

problem.  

 

Typically, the violations begin to increase at different 

uncertainty levels for different solutions, e.g. (Rocha and 

Fernandes 2009) around 10−7 and (Ray and Liew 2003) 

around 10−4. Robust solutions show influences only at 

higher uncertainty, whereas fragile solutions are affected 

earlier. The violations need not be strictly increasing, c.f. 

(Azad and Fernandes 2011). This can be the case if the 

solution violates constraints at lower or no uncertainty, 

and sufficiently high uncertainty allows it to become 

feasible again. 

The series of violations also allows visual comparisons 

of different solutions. First and most important, solutions 

with a progression strictly lower than the progression of 

an other solution are more robust since they violate less 

constraints at all uncertainty levels, cf. (Akhtar et al. 

2002) versus (Ray and Liew 2003). This allows ranking 

solutions based on their robustness. In addition, the 

violations-gap of two solutions at a specific uncertainty 

level tells how much more robust a solution is.  

Solutions with intersecting series cannot be compared 

unambiguously, like (Rocha and Fernandes 2009) and 

(Ray and Liew 2003). In such a case, unambiguity is 

limited to non-intersecting intervals. The smaller the 

interval, the more likely that multiple solutions can be 

compared unambiguously. 

 

3.4. Estimate Robustness Ranking 

We still want to estimate which solution is more robust 

over a large uncertainty interval, even though comparing 

solutions unambiguously is not possible when their 

violations progressions intersect. We calculate the area 𝑉 
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under the curve of the violations series over the 

uncertainty range. Because we do not know whether 

higher or lower uncertainty is more important, we weight 

them equally by using a log-scale on the uncertainty-axis, 

as in Figure 3. We use the middle Riemann sum with a 

log-scaled partition size to calculate the violation area 

 

𝑉 = ∑
𝑣(𝒙, 𝑢𝑖) + 𝑣(𝒙, 𝑢𝑖−1)

2
(log 𝑢𝑖 − log 𝑢𝑖−1) 

𝑛

𝑖=1

, (8) 

 

where 𝑣(𝒙, 𝑢) yields the number of violated constraints 

for a solution 𝒙 at the uncertainty level 𝑢 and 𝑛 is the 

number of samples drawn from the uncertainty range.  
We argue that solutions with a lower area of violations 

are more robust over a larger uncertainty interval. This 

gives a single, real-valued coefficient for robustness that 

allows ordering and distance calculation.  

However, this coefficient cannot be interpreted easily 

because its magnitude depends on the uncertainty range. 

By dividing the area by the range of the (logarithmized) 

uncertainty interval, it can be directly related to values 

calculated by a fixed uncertainty level. This relative area 

of violations, 

 

𝑉𝑟𝑒𝑙 =
𝑉

log 𝑢𝑚𝑎𝑥 − log 𝑢𝑚𝑖𝑛
 ,                        (9) 

 

can also be interpreted as weighted mean of violations at 

multiple fixed uncertainty levels, where the weights are 

the distances of two adjacent uncertainty levels. 

With a single coefficient that describes robustness, we 

are able to compare quality and robustness in a 

scatterplot. This allows visualizing the tradeoff between 

robustness and quality, as shown in Figure 4 with 

selected solutions for the speed reducer problem. The 

objective is calculated similarly by the area under the 

objective progression. As the objective and the violations 

are minimized, solutions at the lower left are preferable. 

However, most solutions are either robust and low 

quality, like (Mezura Montes et al. 2003), or high quality 

and not robust, like (Bernardino et al. 2007). (Rocha and 

Fernandes 2009) would be a reasonable tradeoff. 

 

 
Figure 4: Comparison of objective and robustness of 

different solutions of the speed reducer problem by a 

scatterplot. 

3.5. Results 

In this section we present selected results from different 

problems for an overview. The full analysis of all 

problems with all solutions can be downloaded at 

http://dev.heuristiclab.com/AdditionalMaterial#EMSS2016. 

For all the presented results we used uniformly 

distributed uncertainties, because it turned out the results 

are similar to using normal distributions and uniform 

distributions are easier to interpret due to the fixed 

ranges. 

Concerning quality, we observed two general behaviors, 

demonstrated by Figure 5. First, uncertainty significantly 

influences the quality only at higher uncertainty levels 

with 𝑢 > 10−1; thus, at lower uncertainty, the order of 

solutions by their quality does not change at all. 

Secondly, the tendency whether quality increases or 

decreases with increasing uncertainty is the same for all 

solutions of a problem. Even the extend of the quality 

changes is very similar. This concludes that uncertainty 

does not significantly influence the order of solutions by 

their quality. 

 

 
Figure 5: Quality progression over uncertainty for 

solutions of the speed reducer problem. 

 

More interesting are the constraints violations, where we 

start with the results of the tension compression spring 

problem, since the results are easier to interpret. Figure 6 

shows the violations progressions of selected solutions 

between uncertainty level 10−10 and 10−1. Only solutions 

that did not violate any constraints without uncertainty 

were selected (see Table 2). Because there are effectively 

no intersections between the progressions, an 

unambiguous ranking for robustness can be determined. 

Our own solution, found by a CMA-ES, starts violating 

constraints early (𝑢 < 10−10) because the solution lies 

very close to constraint boundaries. This also 

demonstrates that solutions specifically optimized for 

maximum quality are typically not robust. The other 

solutions from the literature use less significant decimal 

places thus are generally not as close to constraint 

boundaries. The most robust solution from the selected 

solutions in Figure 6 is  (Coello Coello 2000); however, 

when compared by quality, this solution performs worse 

than all others, shown in the scatterplot in Figure 8. For 

quality only, (Ray and Liew 2003) would be the better 

choice. Choosing an appropriate compromise depends 

mainly on the expected uncertainty and specifics of the 

optimization problem. 
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The progressions of violations for the pressure vessel 

problem, shown in Figure 7, is more difficult to interpret. 

First of all, intersecting progressions means that not all 

solutions can be compared unambiguously, for instance 

(Akhtar et al. 2002) and (Coello Coello 2000). Some 

solutions, however, can be ranked unambiguously, for 

instance (He and Wang 2007) is more robust on all levels 

than (Bernardino et al. 2007), (Kaveh and Talatahari 

2010) and the solution from this paper by the CMA-ES. 

Similar to the results of the tension compression spring, 

our solution is less robust than all other solutions.  

Choosing the most robust solution in this case depends 

on the expected uncertainty. If one expects small 

uncertainties 𝑢 < 10−2, the most robust solution would be 

(Akhtar et al. 2002). If the production system usually 

inflicts high uncertainty (𝑢 > 2 ⋅ 10−2), (Coello Coello 

2000) would be better. The estimated ranking over the 

whole uncertainty range, as described earlier, can be 

deduced from the scatterplot in Figure 9. The scatterplot 

also shows that (Akhtar et al. 2002) is slightly more 

robust than (Coello Coello 2000), but both have a 

significantly worse quality than all other displayed 

solutions. 

Results for the speed reducer problem and welded beam 

problem are omitted in this paper because the results are 

similar to the pressure vessel problem. 

 

 
Figure 6: Violations progression over uncertainty for selected solutions of the tension compression spring problem. 

 

 
Figure 7: Violations progression over uncertainty for selected solutions of the pressure vessel problem. 

 

 
Figure 8: Scatterplot showing quality vs. violations of 

selected solutions for the tension compression spring 

problem. 

 
Figure 9: Scatterplot showing quality vs. violations of 

selected solutions for the pressure vessel problem. 
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4. DISCUSSION 

In this paper, we motivated robustness of solutions in 

engineering design problems and demonstrated the 

necessary steps to analyze uncertainty and robustness. 

In the first part of this paper, we implemented popular 

constrained optimization problems using HeuristicLab 

and demonstrated different techniques for constraint 

handling by transforming the problem into an 

unconstrained optimization problem using penalties. 

Then, we used the CMA-ES to find solutions for the 

given problems and compared our solutions to solutions 

from various literature sources. 

In the second part of this paper, we introduced 

uncertainty as an influence that causes small 

perturbations to solution candidates. We quantified these 

uncertainties with random distributions and introduced 

uncertainty levels as a measure of the variance 

uncertainty inflicts on the solutions. Then, we showed 

that the robustness of solutions can be visualized and 

compared using charts that plot the progression of 

violated constraints over increasing uncertainty and 

further demonstrated how the area under the progression 

can be used to estimate a ranking of robustness when an 

unambiguous ranking is not possible. Finally, we 

illustrated that a solution’s quality and robustness often 

oppose and a compromise must be picked. 

A reasonable next step would be to consider uncertainty 

directly during the solving and optimization process, to 

search for solutions that are high quality and are robust. 

This suggests using multi-objective optimization 

techniques, which simultaneously optimize the objective 

value of a solution as well as its robustness. However, 

new questions arise, for instance, for which uncertainty 

level a solution should be optimized for? Is it possible to 

optimize it for a wider range of uncertainty? Which 

(optimization) algorithms are to use for optimizing the 

resulting multi-objective optimization problem? 

Another interesting aspect for future research would be 

the analytical prediction of robustness based on the 

formal description of a constrained optimization 

problem. Our research suggested that for the same 

optimization problem, increasing uncertainty has the 

same effect on the quality for all solutions. Those 

correlations could also be predicted analytically by 

analyzing the objective function in detail. Similarly, the 

robustness of a solution could be predicted analytically 

by analyzing the constraints, how close a solution is to 

those constraints and how perturbation would increase 

the likelihood that those constraints will be violated. 

For a broader empirical confirmation of our findings, 

additional engineering design optimization problems 

could be studied. A real world test scenario would also 

be very interesting.  

We believe that uncertainty, and the goal to find robust 

solutions, will become a major factor in engineering 

problems. Thus, the study of techniques and algorithms 

that are able to find robust solutions while maintaining 

high quality will continue and increase. 
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APPENDIX A: BENCHMARK INSTANCES 

 

A.1 Pressure Vessel Problem 

Minimize the fabrication costs of a cylindrical pressure 

vessel given by the thickness of the pressure vessel (𝑥1), 

the thickness of the head (𝑥2), the inner radius of the 

vessel (𝑥3) and the length of the vessel without heads 

(𝑥4), shown in Figure 10. 

 
Figure 10: Schematic illustration of a pressure vessel and 

its parameters. Image adapted from Cagnina et al. (2008). 

 

The pressure vessel problem is formally described as 
𝑓(𝒙) = 0.6224𝑥1𝑥3𝑥4 + 1.7781𝑥2𝑥3

2 + 3.1661𝑥1
2𝑥4

+ 19.84𝑥1
2𝑥3 

where 
𝒙 = (𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ ℝ4 

𝑥1 = {0.0625𝑡 | 𝑡 ∈ ℤ ∩ [1; 99]} 
𝑥2 = {0.0625𝑡 | 𝑡 ∈ ℤ ∩ [1; 99]} 
𝑥3 ∈ [10; 200] 𝑥4 ∈ [10; 200] 

subject to 𝑔𝑗(𝒙) ≤ 0 with 

𝑔1(𝒙) = −𝑥1 + 0.0193𝑥3 𝑔2(𝒙) = −𝑥2 + 0.00954𝑥3 

𝑔3(𝒙) = −𝜋𝑥3
2𝑥4 −

4

3
𝜋𝑥3

3 + 1,296,000 𝑔4(𝒙) = 𝑥4 − 240 

 

A.2 Speed Reducer Problem 

Minimize the weight of a speed reducer given by the gear 

face width (𝑥1), the teeth module (𝑥2), the number of 

pinion teeth (𝑥3), the lengths of the shafts between 

bearings (𝑥4, 𝑥5) and the diameters of the shafts (𝑥6, 𝑥7), 

shown in Figure 11. The speed reducer is constrained to 

bending stress of the gear teeth, surface stress, transverse 

deflection of the shafts and stress in the shafts. 

 
Figure 11: Schematic illustration of a speed reducer and 

its parameters. Image adapted from Townsend (2016). 



The speed reducer problem is formally described as 
𝑓(𝒙) = 0.7854𝑥1𝑥2

2(3.3333𝑥3
2 + 14.9334𝑥3 − 43.0934)

− 1.508𝑥1(𝑥6
2 + 𝑥7

2) + 7.4777(𝑥6
3 + 𝑥7

3)

+ 0.7854(𝑥4𝑥6
2 + 𝑥5𝑥7

2) 
where 

𝒙 = (𝑥1, 𝑥2, … , 𝑥7) ∈ ℝ7 
𝑥1 ∈ [2.6; 3.6] 𝑥2 ∈ [0.7; 0.8] 𝑥3 ∈ ℤ ∩ [17; 28]

𝑥4 ∈ [7.3; 8.3] 𝑥5 ∈ [7.3; 8.3] 𝑥6 ∈ [2.9; 3.9]

𝑥7 ∈ [5; 5.5]
 

subject to 𝑔𝑗(𝒙) ≤ 0 with 

𝑔1(𝒙) =
27

𝑥1𝑥2
2𝑥3

− 1 𝑔2(𝒙) =
397.5

𝑥1𝑥2
2𝑥3

2 − 1 

𝑔3(𝒙) =
1.93𝑥4

3

𝑥2𝑥3𝑥6
4 − 1 𝑔4(𝒙) =

1.93𝑥5
3

𝑥2𝑥3𝑥7
4 − 1 

𝑔5(𝒙) =
1

110𝑥6
3

√(
745𝑥4

𝑥2𝑥3
)

2

+ 16.9 ⋅ 106 − 1 

𝑔6(𝒙) =
1

85𝑥7
3

√(
745𝑥5

𝑥2𝑥3
)

2

+ 157.5 ⋅ 106 − 1 

𝑔7(𝒙) =
𝑥2𝑥3

40
− 1 𝑔8(𝒙) =

5𝑥2

𝑥1
− 1 

𝑔9(𝒙) =
𝑥1

12𝑥2
− 1 𝑔10(𝒙) =

1.5𝑥6 + 1.9

𝑥4
− 1 

𝑔11(𝒙) =
1.1𝑥7 + 1.9

𝑥5
− 1 

 

A.3 Tension/Compression Spring Problem 

Minimize the weight of a coil spring under a constant 

tension/compression load given by the wire diameter 

(𝑥1), the winding diameter (𝑥2) and the number of active 

coils (𝑥3), shown in Figure 12. 

 
Figure 12: Schematic illustration of a 

tension/compression spring and its parameters. Image 

adapted from Bernardino et al. (2007). 

 

The tension/compression spring problem is formally 

described as 
𝑓(𝒙) = (𝑥3 + 2)𝑥2𝑥1

2 
where 

𝒙 = (𝑥1, 𝑥2, 𝑥3) ∈ ℝ3 

𝑥1 ∈ [0.05; 2] 𝑥2 ∈ [0.25; 1.3] 𝑥3 ∈ [2; 15]  

subject to 𝑔𝑗(𝒙) ≤ 0 with 

𝑔1(𝒙) = 1 −
𝑥2

3𝑥3

71,785𝑥1
4 

𝑔2(𝒙) =
4𝑥2

2 − 𝑥1𝑥2

12,566(𝑥2𝑥1
3 − 𝑥1

4)
+

1

5,108𝑥1
2 − 1 

𝑔3(𝒙) = 1 −
140.45𝑥1

𝑥2
2𝑥3

𝑔4(𝒙) =
𝑥1 + 𝑥2

1.5
− 1 

 

A.4 Welded Beam Problem 

Minimize the fabrication costs of a welded beam given 

by the thickness of the weld (𝑥1), the length of the welded 

joint (𝑥2), the width of the beam (𝑥3) and the thickness 

of the beam (𝑥4), shown in Figure 13. The welded beam 

is subject to constraints on shear stress (𝜏), bending stress 

in the beam (𝜎), buckling load on the bar (𝑃𝑐) and end 

deflection of the beam (𝛿). 

 
Figure 13: Schematic illustration of a welded beam and 

its parameters. Image adapted from Cagnina et al. (2008). 

 

The welded beam problem is formally described as 
𝑓(𝒙) = 1.10471𝑥1

2𝑥2 + 0.04811𝑥3𝑥4(14 + 𝑥2) 
where 

𝒙 = (𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ ℝ4 
𝑥1 ∈ [0.1; 2] 𝑥2 ∈ [0.1; 10] 𝑥3 ∈ [0.1; 10] 𝑥4 ∈ [0.1; 2] 
subject to 𝑔𝑗(𝒙) ≤ 0 with 

𝑔1(𝒙) = 𝜏(𝑥) − 𝜏max 𝑔2(𝒙) = 𝜎(𝑥) − 𝜎max 
𝑔3(𝒙) = 𝑥1 − 𝑥4 𝑔4(𝒙) = 0.125 − 𝑥1 
𝑔5(𝒙) = 𝛿(𝑥) − 𝛿𝑚𝑎𝑥 𝑔6(𝒙) = 𝑃 − 𝑃𝑐(𝑥) 

and 

𝜏(𝒙) = √𝜏1
2 + 2𝜏1𝜏2

𝑥2

2𝑅
+ 𝜏2

2 𝜏1 =
𝑃

√2𝑥1𝑥2

𝜏2 =
𝑀𝑅

𝐽
 

𝑀 = 𝑃 (𝐿 +
𝑥2

2
) 𝑅 = √

𝑥2
2

4
+ (

𝑥1 + 𝑥3

2
)

2
 

𝐽 = 2
𝑥1𝑥2

√2
(

𝑥2
2

12
+ (

𝑥1 + 𝑥3

2
)

2

) 

𝜎(𝒙) =
6𝑃𝐿

𝑥4𝑥3
2 𝛿(𝒙) =

4𝑃𝐿3

𝐸𝑥3
3𝑥4

 

𝑃𝑐(𝒙) =
4.013√𝐸𝐺𝑥3

2𝑥4
6

36
𝐿2

(1 −
𝑥3

2𝐿
√

𝐸

4𝐺
) 

𝜏max = 13,600 psi 𝜎max = 30,000 psi 𝛿𝑚𝑎𝑥 = 0.25 in

𝑃 = 6,000 lb 𝐺 = 12 ⋅ 106 psi 𝐸 = 30 ⋅ 106 psi

𝐿 = 14 in
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