
Large Scale Parameter
Meta-Optimization of Metaheuristic

Optimization Algorithms with
HeuristicLab Hive

Christoph Neumüller, Andreas Scheibenp�ug, Stefan Wagner,

Andreas Beham, Michael A�enzeller

Josef Ressel-Centre HEUREKA! for Heuristic Optimization

School of Informatics, Communications and Media - Hagenberg

University of Applied Sciences Upper Austria

c.neumueller@gmail.com, {ascheibe, swagner, abeham, ma�enze}@heuristiclab.com

Abstract� In the recent decades many di�erent
metaheuristic algorithms have been developed and
applied to various problems. According to the no

free lunch theorem no single algorithm exists that
can solve all problems better than all other algo-
rithms. This is one of the reasons why metaheuristic
algorithms often have parameters which allow them
to change their behavior in a certain range. How-
ever, �nding good parameter values is not trivial
and requires human expertise as well as time. The
search for optimal parameter values can be seen as
an optimization problem itself which can be solved
by a metaheuristic optimization algorithm (meta-

optimization). In this paper the authors present
the meta-optimization implementation for the heuris-
tic optimization environment HeuristicLab. Because
meta-optimization is extremely runtime intensive, a
distributed computation infrastructure, HeuristicLab
Hive, is used and will be described in this paper as
well. To demonstrate the e�ectiveness of the imple-
mentation, a number of parameter optimization ex-
periments are performed and analyzed.

I. Motivation

Most metaheuristic algorithms have a number of be-
havioral parameters which a�ect their performance.
For most algorithms, there exist established default
values for these parameters which are commonly
used. However parameter values for an algorithm
might work well on one problem instance but not so
well on another. Researchers are often in the situ-
ation that they need to tune the parameter values
for a new problem instance. Unfortunately, �nding
the best parameter values is not a trivial task and it
is di�cult to understand the e�ect of every param-
eter. Additionally, parameters may not be indepen-
dent of each other. The change to one parameter can
change the e�ect of other parameters which makes
the problem even more complex. Although meta-
heuristic algorithms exist for decades, a parameter-
less algorithm which performs well on all problems
has not been found yet. According to the no free

lunch theorem by Wolpert and Macready [1] it is in
fact impossible to �nd such an algorithm which per-
forms better than all other algorithms on all prob-
lems. Therefore, for a metaheuristic it is bene�cial
to have parameters and therefore the ability to adapt
to the problem.

The problem of �nding the optimal parameters for
an algorithm can be seen as an optimization prob-
lem. A human expert is able to anticipate good pa-
rameters through experience, however novice users
of metaheuristics will have to resort to trial-and-
error to obtain parameters that achieve the desired
results. Depending on the problem this may be a
task that takes some time. The idea is to use an opti-
mization algorithm as a meta-level optimizer to �nd
the optimal parameter values of another algorithm.
This concept is called parameter meta-optimization

(PMO). There has been research in the area of PMO
in the past, but in most of these approaches, special-
ized implementations were used for the meta-level
algorithms which were not exchangeable. In the fol-
lowing, a �exible and extendable implementation of
the PMO concept for the optimization environment
HeuristicLab1(HL) [2] is presented. As the execu-
tion of meta-optimization algorithms is highly run-
time intensive, the distributed parallelization envi-
ronment of HeuristicLab, called Hive, is used for the
experiments which is also described in this paper.

II. HeuristicLab Hive

HeuristicLab Hive is an elastic, scalable and secure
infrastructure for distributed computation. It is part
of the open source optimization environment Heu-
risticLab implemented in C# using version 4.0 of
the Microsoft .NET framework. Hive consists of a

1http://dev.heuristiclab.com



server with a database and a number of computa-
tion slaves. A user can upload a job to the Hive
server via a web service interface. Then the server
distributes the jobs among the available slaves and
retrieves the results after they are �nished. The fol-
lowing list shows the most important aspects and
features of HeuristicLab Hive:

Generic Usage: Though the main purpose of Heu-
risticLab Hive is to execute HL algorithms, it is de-
signed to be completely independent from HL. Any
type of job can be executed on Hive. A job is a
.NET object which implements a certain interface.
Hive o�ers a web service to add, control and remove
jobs.

Elasticity: Slaves can be added and removed at any
time, even while they are calculating jobs. There-
fore, jobs have the ability to be paused and per-
sisted. The advantage of an elastic system is to be
able to add resources at peak demand times and re-
move them if they are needed otherwise. There are
no automatic snapshots of job results, but a user can
pause, modify, and resume a single job any time.

Heterogeneity: Slaves with di�erent properties and
constraints are supported. CPU performance and
available memory can di�er in every slave. Job
scheduling respects these constraints. Hive is also
independent of the network infrastructure. A slave
can be directly connected through a fast high-speed
link or it can be far away in a secured company net-
work. The only requirement for slaves is to have the
Microsoft .NET 4.0 framework installed.

Time schedules: It is possible to de�ne time sched-
ules for slaves and groups of slaves. A time schedule
de�nes when a slave is allowed to calculate and when
it is not. This is particularly useful for using o�ce
computers at night which would be unused other-
wise.

Plugin-Independency: Slaves are lightweight appli-
cations and do not contain the assemblies needed
to execute a job. When a job is uploaded, the �les
and assemblies that are needed to execute the job
are automatically discovered and also uploaded. As-
semblies and �les are grouped in plugins which are
versioned. Hive takes care of distributing, storing,
and caching those �les e�ciently. The possibility
to submit a job with versioned plugins makes Hive
independent of already deployed plugins and elimi-
nates the need to update slaves.

Security: Hive puts emphasis on security. Users can
control on which slaves their jobs should be com-
puted. Hive ensures con�dentiality and integrity of
all communication by using X.509 certi�cates and
message level encryption. Since a user can upload

custom assemblies to the system, it is crucial that
on a slave each job is executed in its own sandbox.
The sandbox limits the permissions of the jobs so
that they have e.g. no access to the �le system.

In the following the main components of Heuristic-
Lab Hive are described:

Server: The server API is exposed as a Windows

Communication Foundation web service which is
hosted inMicrosoft Internet Information Server 7.5.
It o�ers methods to upload jobs and plugins, to fetch
state information about jobs and to download re-
sults. It also exposes methods to control and ad-
minister the system, including tasks such as group-
ing slaves or analyzing system performance. The
server also decides, if a slave gets another job or not
depending on its schedule, free resources and the as-
signment of resource groups for the jobs.

Slave: Slaves are executed as Windows services. The
reason for this choice is that the slave can run no
matter which user is logged in and even if no user
is logged in. The slave sends periodic messages to
the server, reporting which jobs are calculated and
how much resources (CPU cores, memory) are avail-
able. The server responds with a list of messages
containing the next actions for the slave. Commu-
nication between the server and its slaves is always
initiated by the slaves to avoid problems which may
be caused by NAT (network address translation) and
�rewalls. Figure 1 shows an exemplary infrastruc-
ture with slaves deployed on various di�erent loca-
tions behind �rewalls.

Client: The HL client for Hive features a user in-
terface for uploading and controlling jobs as well as
an administrator console. It allows creating and ar-
ranging slave groups and observing the slaves' cur-
rent state. The administrator console also enables
a user to de�ne a schedule for slaves or groups of
slaves.

Jobs executed with Hive typically contain di�erent
parameterizations of one or more algorithms applied
to one or more problems. Often each con�guration is
repeatedly applied to obtain the mean and variance
of the optimization results. Theses jobs do no re-
quire communication during their execution, there-
fore, the speed-up scales very well with the number
of available slaves. Naturally, there exists a certain
overhead in the distribution of the job, as well as
the required plugins, but especially for long-running
jobs this overhead does not play a signi�cant role.
As is described by Gustafson's law [3] the speed-up
increases with increasing job sizes.



Fig. 1. Exemplary Hive slave deployment

Fig. 2. Meta-optimization concept

III. Meta-Optimization

A. Existing Approaches

Meta-optimization is a technique where an optimiza-
tion algorithm is applied as a meta-level optimizer
to another optimization algorithm. The algorithm
which solves the parameter optimization problem is
called meta-level algorithm, whereas the algorithm
which is optimized is called base-level algorithm.
Figure 2 illustrates the structure of this idea.

Seeing the parameter optimization problem as an op-
timization problem on its own is not a new idea.
There are various previous works in this area [4],
[5], [6], [7], [8], [9], [10], [11] which have some com-
mon characteristics. In most previous approaches to
meta-optimization the implementation is tailored to
only one or a few algorithm types. On the meta-
level, specialized variants of existing optimization
algorithms were implemented. The advantage is
that they can be optimized to achieve good results
with a few number of evaluations, however it is dif-
�cult to reproduce the results. When no broadly
known and well-documented algorithms are used, it
becomes merely impossible to re-implement an al-
gorithm that is only brie�y described in a publica-
tion. Most meta-optimization approaches are cus-
tom implementations with command line interfaces,
application programmer interfaces (APIs), or rudi-
mentary graphical user interfaces. This reduces us-
ability for people who were not involved in the de-

velopment. Many approaches use binary encoding
for parameter values, mainly due to performance ad-
vantages [12], [13], [14], [15], however modern meta-
heuristics often use more natural encodings which
represent the problem in a more direct way. Some
authors did use parallelization concepts in their ap-
proaches, but most of them just mentioned that par-
allel and distributed computation is highly suitable
for meta-optimization. Most approaches do only op-
timize against one optimization goal, which is the
average best quality achieved by the base-level algo-
rithm. Other goals such as robustness and e�ort are
only considered by few [10].

B. HeuristicLab Meta-Optimization

The PMO approach described in this paper tries to
improve on some of the previously mentioned draw-
backs of available solutions. In the following some
of the most important characteristics are outlined.

Due to the generic implementation it is not necessary
to apply any adaptations to the meta-level and the
base-level algorithm. Basically, any algorithm im-
plemented in HeuristicLab can be used to optimize
any other algorithm. This allows using the power
of existing algorithms and new algorithms on the
meta-level in the future. Another characteristic is a
multi-objective �tness function. This allows to
• optimize for �nding the best settings,
• optimize for maximum robustness or
• optimize for minimum e�ort.
Another aspect of the HL PMO implementation is
that it doesn't use binary encoding for parameter
values but an encoding which represents the param-
eters in a more natural way. There are boolean pa-
rameters, numeric parameters, and con�guration pa-
rameters that use elements of a given unordered set.
For this representation it o�ers exchangeable oper-
ators for manipulating parameter values in solution
candidates. An additional property is that the user
is able to decide which parameters of an algorithm
should be optimized. Further, it is possible to de-
�ne in which range each parameter value should be
optimized. In that way a user can use his expertise
and narrow search ranges to reduce the size of the
search space. The PMO implementation in Heuris-
ticLab is designed in such a way that parallel and
distributed execution of the meta-level algorithm is
feasible. To conclude with one of HL's most impor-
tant concepts, the implementation o�ers a rich and
easy to use graphical user interface. It allows even
non-experienced users to get started quickly.

C. Solution Encoding

In the following a brief overview of the chosen solu-
tion encoding is given. In HeuristicLab algorithms
and problems de�ne certain parameters, some of
these may be operators which may again de�ne pa-
rameters. To give an example, a genetic algorithm



has a parameter for its population size as well as a
parameter for the selection operator. The selection
parameter could be tournament selection, which is
an operator and has again a parameter for the group
size. Therefore a composite tree structure of param-
eters emerges. Because the goal of PMO is to op-
timize these parameters, the PMO solution encod-
ing has to mirror this parameter tree structure. For
PMO, the representation of a solution candidate is
a tree of concrete parameter values for a parameter-
izable object. An additional requirement for PMO
is that the way how each parameter should be opti-
mized needs to be con�gurable. It should be possi-
ble to de�ne which parameters of a parameterizable
object should be optimized and for each of these pa-
rameters di�erent con�guration options should be
available, depending on the type of the parameter.

The solution representation for PMO in HL is called
parameter con�guration tree. Each parameter of an
object (e.g. an algorithm, problem or operator) has a
corresponding parameter con�guration. The param-
eter con�guration contains information about the
parameter such as the name, the allowed data types,
a list of possible values and a reference to the cur-
rently selected value. Possible values for a parameter
can be a single value, multiple values and a range of
values with an upper and a lower bound. Ranges
support sampling random values or enumerating all
values in the range for a given step size. Because
parameter values can be parameterized themselves,
there also exists a parameter con�guration that con-
tains a collection of parameter con�gurations, which
corresponds to the parameters of the value. With
the parameter con�guration tree the user can decide
which and how a parameter should be optimized.
Every parameter con�guration also o�ers functional-
ity for randomization, crossover and mutation which
is used by evolutionary optimization algorithms.

D. Fitness Function

The �tness function of a PMO solution candidate
consists of the following components:

• Solution Quality (q): The average achieved
quality of n base-level algorithm runs.
• Robustness (r): The standard deviation of the
qualities of n base-level algorithm runs.
• E�ort (e): The average number of evaluated so-
lutions of n base-level algorithm runs. The number
of evaluated solutions was chosen because the execu-
tion time is not a reliable measure in a heterogeneous
distributed computation environment.

These components represent con�icting objectives.
For example it is expected that, e.g. an iteration
based optimization algorithm is able to deliver bet-
ter results with a higher number of iterations. Cer-
tainly the results will not worsen if the best quality is
remembered. If the maximum number of iterations
was therefore set to be optimized, solution quality

would be expected to improve as the iterations in-
crease, but the e�ort would become worse the more
solutions are evaluated in this con�guration. A bet-
ter con�guration could be found that reaches the
same quality, but in less iterations and therefore with
less evaluated solutions.

There are two options to tackle multi-objective prob-
lems. The simplest one is to turn it into a single-
objective problem by computing a weighted sum of
the objective values. Another option would be to ob-
tain a pareto front [16] of the objectives. A number
of algorithms have emerged to perform such kind
of multi-objective optimization as for example the
NSGA-II [17]. However, for the sake of simplicity, in
this implementation a weighted average was chosen.
Another requirement is that optimal parameter val-
ues for multiple problem instances should be found.
Therefore, PMO allows a user to add multiple prob-
lem instances for the base-level algorithm. However,
di�erent problem instances might yield quality val-
ues in di�erent dimensions. An example would be to
optimize a GA for three Griewank [18] test-functions
in the dimensions 5, 50 and 500. A GA with a given
parameterization might result in the quality values
0.17, 4.64 and 170.84. Using a simple arithmetic
mean for the �tness function would overweight the
third instance a lot. It is the goal to �nd settings
which are suited for each instance equally well. To
tackle this issue, normalization has to be applied on
all results of each run (q, r, e). The reference values
for normalization are the best values from the �rst
generation (q0, r0, e0). Furthermore each objective
needs to be weighted (wq, wr, we). The quality (Q)
of a solution candidate (c) for m base-level problems
is thereby de�ned as:

Q(c) =
1

m

m∑
i=1

qi
rq
wq +

ri
rr
wr +

ei
re
we

wq + wr + we

E. Operators

Algorithms in HL are abstracted from the opti-
mization problem and the problem encoding. Al-
gorithms are represented as a sequence of steps in-
cluding certain operators that manipulate the so-
lution. The problem, and especially the encod-
ing in HL implement and these operators while the
problem exposes them to the algorithm. Among
these encoding-speci�c operators are those that cre-
ate solutions, crossover-, and mutation-operators
for population-based algorithms as well as move-
operators for trajectory-based algorithms. Until now
only operators for population-based evolutionary al-
gorithms have been implemented for the parameter
con�guration tree encoding. The solution creator
is responsible for creating a random solution candi-
date. This operator is mainly used to initialize an
initial generation of randomized individuals. The
solution creator for PMO needs one initial parame-
ter con�guration tree which can be generated from



a given algorithm and a problem.

The evaluation operator applies the �tness function
on a solution candidate in order to compute its qual-
ity. In the case of PMO, the base-level algorithm
needs to be parameterized and executed n times for
each base-level problem. The PMOEvaluator there-
fore creates an instance of the base-level algorithm
for each repetition and for each base-level problem
instance. Then each of the base-level algorithm in-
stances is executed and after all runs have �nished,
the results of each run are collected. For each base-
level problem instance the average quality, the stan-
dard deviation of the qualities, and the average num-
ber of evaluated solutions is computed. The last step
in the evaluation is the normalization of these val-
ues. The average of the normalized �tness measures
represents the �nal quality value for one solution
candidate. The evaluation of solution candidates
is the computationally most intense part of meta-
optimization. Fortunately, the solution evaluations
are independent from each other, which makes paral-
lelization a viable option. In HL, parallel evaluation
of solution candidates is possible either locally with
multiple threads or distributed using HL Hive. For
this paper, HeuristicLab Hive was used to overcome
the runtime requirements.

The mutation operation in evolutionary algo-
rithms is supposed to manipulate one solution
candidate. There are two operators for select-
ing nodes of the tree that should be manipu-
lated. The ParameterCon�gurationOnePosition-

Manipulator selects one parameter randomly while
the ParameterCon�gurationAllPositionsManipulator

selects all parameters. After the element nodes that
should be mutated are selected, type-speci�c manip-
ulation operators are applied on each of them:
• Mutation of Parameter Con�gurations:
When a parameter con�guration is mutated, a new
current value is selected randomly from the list of
available value con�gurations. The selection proba-
bility is equally distributed.
• Mutation of Boolean Values: Since boolean
values can only have two di�erent values (true,
false), one of these values is randomly chosen by the
mutation operator.
• Mutation of Numeric Values: For integer and
double values mutation is done by sampling from a
uniform or normal distribution.
The crossover operation is supposed to combine the
genes of two solution candidates to create a new one.
For PMO this means to combine two parameter con-
�guration trees. Each node in the trees is crossed
with the corresponding node of the other tree. The
concrete crossover operation depends on the data
type of the node:
• Crossover of Parameter Con�gurations:
When two parameter con�gurations are crossed, the
index of the currently selected value con�guration is

Parameter Name Value
Algorithm GA
Maximum generations 100
Population size 30
Mutation probability 10%
Elites 1
Selection Proportional
Mutation OnePosition
Mutation (values) NormalValue
Crossover NormalValueOX
Evaluation repetitions 6
Quality weight 1.0
Robustness weight 0.0
E�ort weight 0.0

TABLE I

Parameters of the meta-level algorithm (m1) for S1

chosen from one of the parents randomly.
• Crossover of Boolean Values: The boolean
value of either of the two parent solution candidates
is chosen randomly.
• Crossover of Numeric Values: There are sev-
eral crossover operators implemented. For example
a DiscreteValueCrossover takes the value of one of
the parents randomly. Another example is an Av-

erageValueCrossover which computes the average of
the values of both parents.

Another important operator is the solution cache
which keeps a history of previously evaluated so-
lutions. Its purpose is to avoid the evaluation of
solutions which have already been evaluated. An
additional option o�ered by the HeuristicLab PMO
is exhaustive search. In some scenarios it might as
well be interesting to explore the whole search space.
Of course, this is only possible, if a small amount of
parameters and narrow search ranges are explored.
Therefore a special operator was created that is able
to enumerate all possible combinations of parameter
values of a parameter con�guration tree.

IV. Experimental Results

In the following, two test scenarios are described and
the results of the experiments are shown.

A. Varying Problem Dimensions

In scenario S1 the parameters of a GA are optimized.
Multiple di�erent Griewank test-functions are used
as base-level problems. As a meta-level optimizer,
a GA is applied. The goal of this scenario is to
�nd out, how the optimal parameter values di�er
when di�erent problem dimensions of test-functions
are used. Table I shows the parameter con�gura-
tion for the meta-level GA. The rather small pop-
ulation size and maximum generations are related
to the immense runtime requirements. A repetition-
count of six has been chosen as a trade-o� between
high runtime demand and high evaluation accuracy.
The average quality is used as the only optimization
objective in this scenario as the goal is to optimize
for optimal parameters.



Parameter
Name

Values

Algorithm GA
Maximum gen-
erations

1'000

Population size 100
Mutation prob-
ability

0%�100%:1%

Elites 0�100:1
Selection 6 di�erent operators e.g.

LinearRank, Proportional,
Random, Tournament

Mutation 7 di�erent operators e.g.
Breeder, MichalewiczNon-
UniformAllPositions, Uniform-
OnePosition, no mutation

Crossover 11 di�erent operators e.g. Av-
erage, Discrete, Heuristic, Lo-
cal, RandomConvex, Single-
Point

TABLE II

Parameter configuration (c1) of the base-level

algorithm for S1

1,43 

6,40 

8,62 

5,54 5,91 

0

2

4

6

8

10

p(c1, f1) p(c1, f2) p(c1, f3) p(c1, f4) p(c1, {f1,
f2, f3, f4})

f1 51,54 

12,47 
16,88 

11,00 11,91 

0

10

20

30

40

50

60

p(c1, f1) p(c1, f2) p(c1, f3) p(c1, f4) p(c1, {f1,
f2, f3, f4})

f2 

18,39 
25,90 

16,02 17,28 

0

20

40

60

80

100

p(c1, f1) p(c1, f2) p(c1, f3) p(c1, f4) p(c1, {f1,
f2, f3, f4})

f3 

24,50 
34,14 

20,13 22,98 

0

20

40

60

80

100

p(c1, f1) p(c1, f2) p(c1, f3) p(c1, f4) p(c1, {f1,
f2, f3, f4})

f4 
2262,53 629,11 

Fig. 3. Average qualities achieved by di�erent parameteriza-
tions for the problems f1 to f4. Each parameterization
(p) was repeated 10 times on each base-level problem.

The parameter con�guration (c1) of the base-level
GA is shown in Table II. The population size and the
number of maximum generations are �xed for this
scenario in order to keep the runtime approximately
equal for all solution candidates. When ranges are
speci�ed, the number after the colon represents the
step size. For parameters not shown in Table II con-
crete values have been chosen to reduce the search
space and simplify the problem.

As a base-level problem the Griewank function [18]
was used in the dimensions 500 f1, 1.000 f2, 1.500
(f3) and 2.000 (f4). One meta-optimization run was
performed for each base-level problem f1�f4 as well
as for the combined problem instance set {f1f2f3f4}.
To validate whether each parameterization is really
optimal for the problem set it has been optimized
for, cross-testing was performed for all results. In
these cross-tests, each parameterization was applied
to a di�erent base-level problem. Figure 3 shows
that p(c1, f1) performs signi�cantly better on f1 (as
expected) than on the other problems, while p(c1, f2)
to p(c1, f5) perform almost equally well on f2 to f5,
but not so well on f1.

p(c1, f1) p(c2, f1)
Elites 1 10
Crossover BlendAlpha BlendAlpha
Mutation SelfAdaptive-

Normal-
AllPos

Breeder

Mutation prob-
ability

27% 24%

Selection Tournament LinearRank
Tournament
group size

5

Generations 100 100
CPU time
(days)

23 66.7

Avg. qualities 1.3952 6.6× 10−10

TABLE III

Solutions of the meta-optimization runs for S1 and

S2

B. Varying Generations

To use more realistic settings, scenario S1 has been
repeated with the same parameter con�gurations
but with 10.000 instead of 1.000 generations. This
scenario S2 shows similar results in the cross tests
as the ones presented with scenario S1, though the
optimal found parameters di�er between S1 and S2.
Table III shows the parameters found by the PMO
for S1 and S2 for the f1 problem. This shows that
changing the number of generations also in�uences
the performance of other parameters.

To further validate the results, the parameter set-
tings of S1 and S2 were cross-tested. These cross
tests show that the parameter values from S1 clearly
outperform the parameter values of S2 for 1'000
generations at every problem. The opposite is the
case for 10'000 generations. For further analysis,
the quality charts for f1 and 10'000 generations are
shown with the settings from S1 (Figure 4) and S2

(Figure 5). In Figure 4 the quality improves sig-
ni�cantly until generation 1'000, but then it stag-
nates and does not improve anymore. In contrast,
the quality chart in Figure 5 shows slower conver-
gence, but it does not su�er from stagnation at all.
The quality improves in almost every iteration until
the last generation is reached.

V. Conclusions and Future Work

The experiments in Scenario 1 have shown that the
optimal parameters can di�er signi�cantly when the
same test-function problem with di�erent dimen-
sions is used. In Scenario 2, very interesting parame-
ters with extremely high mutation probabilities and
a high number of elites were identi�ed as best param-
eter settings. It indicates that the best parameters
can be far o� the default and commonly used set-
tings. In the comparison of scenario 1 and 2, the
e�ect of using di�erent numbers of iterations on the
parameters was analyzed. It was shown that the pa-
rameter settings are valid because switching them



Fig. 4. Shows the quality history of a GA run for f1 over
10'000 generations. The settings that were used in this
run were optimized for 1'000 generations.

Fig. 5. Shows the quality history of a GA run for f1 over
10'000 generations. The settings that were used in this
run were optimized for 10'000 generations.

between scenarios led to worse results. Concluding,
the approach of using a meta-level algorithm to �nd
the optimal parameters has proven to work very well
on some problems. It is possible to �nd parameter
value combinations that are very di�erent from com-
monly used settings. This functionality comes at the
cost of huge runtime demands.

The advancements in computing power in the recent
years have made PMO feasible. Parallelization and
distributed computing has been used to perform ex-
periments. However, there is room for improvement
in terms of runtime performance. Two ways to op-
timize runtime would be racing and sharpening [8].
When racing is used, promising solution candidates
are evaluated more often than bad solution candi-
dates. With sharpening, the number of repetitions
is increased depending on the current generation. In
this way, the solution evaluation is faster in the be-
ginning of the optimization process and gets more
and more precise towards the end.

An idea to simplify future development of PMO
would be to provide benchmark problems for pa-
rameter settings. Such a benchmark problem could
have a generated meta-�tness landscape. Evaluating
a solution candidate would only require to lookup a

value, so that the evaluation of solution candidates
would become extremely fast. Of course, the �tness
evaluation should underlie a stochastic distribution,
just as real evaluations of parameter settings. This
would make it much easier to tune the parameters
of a meta-level optimizer.

Where to get HeuristicLab Hive

HL Hive is part of HeuristicLab since version 3.3.6.
HeuristicLab can be downloaded from the o�cial
homepage2. HeuristicLab PMO is still in develop-
ment and can be downloaded as an additional pack-
age3.

The software described in this paper is licensed un-
der the GNU General Public License4.

Hardware Infrastructure

The hardware used for the experiments is a Dell
Blade System. One blade has the following prop-
erties:
• CPU: 2x Intel Xeon E5420, 2.50 GHz, 4 cores
• Memory: 32 GB
• OS: Windows Server 2008R2 Enterprise 64-bit
All experiments described in this paper were exe-
cuted in the Hive with 4 blades at a time. The ex-
ecution of the experiments took place at an early
stage of the Hive roll out. Hive currently consists of
around 65 computers varying from blade computers
to PC's from the computer labs of the University of
Applied Sciences Upper Austria resulting in a total
number of 150 CPU cores.

Acknowledgments

HeuristicLab Hive is a 3 years e�ort on which vari-
ous students as well as members of the HEAL team
worked on. The computational resources for the ex-
periments were provided by the University of Ap-
plied Sciences Upper Austria. The work described
in this paper was done within the Josef Ressel-Centre
HEUREKA! for Heuristic Optimization sponsored
by the Austrian Research Promotion Agency (FFG).

References

[1] David H. Wolpert and William G. Macready, �No free
lunch theorems for optimization,� IEEE Transactions
on Evolutionary Computation, vol. 1, no. 1, pp. 67�82,
1997.

[2] StefanWagner, Heuristic optimization software systems-
Modeling of Heuristic Optimization Algorithms in the
HeuristicLab Software Environment, Ph.D. thesis, Jo-
hannes Kepler University, Linz, Austria, 2009.

[3] John L. Gustafson, �Reevaluating amdahl's law,� Com-
mun. ACM, vol. 31, pp. 532�533, 1988.

[4] R.E. Mercer and J.R. Sampson, �Adaptive search using
a reproductive metaplan,� Kybernetes, vol. 7, no. 3, pp.
215�228, 1978.

[5] Darrell Whitley, �A free lunch proof for gray versus
binary encodings,� in Proceedings of the Genetic and

2http://dev.heuristiclab.com/download
3http://dev.heuristiclab.com/trac/hl/core/wiki/

BranchesDailyBuilds
4http://www.gnu.org/licenses/gpl.txt



Evolutionary Computation Conference. 1999, vol. 1, pp.
726�733, Morgan Kaufmann.

[6] Thomas Bäck, �Parallel optimization of evolutionary al-
gorithms,� Lecture Notes In Computer Science, vol. 866,
pp. 418�427, 1994.

[7] Michael Meissner, Michael Schmuker, and Gisbert
Schneider, �Optimized particle swarm optimization
(opso) and its application to arti�cial neural network
training,� BMC Bioinformatics, vol. 7, no. 1, pp. 125,
2006.

[8] S. K. Smit and A. E. Eiben, �Comparing parameter
tuning methods for evolutionary algorithms,� in IEEE
Congress on Evolutionary Computation, 2009, pp. 399�
406.

[9] Volker Nannen and A.E. Eiben, �A method for param-
eter calibration and relevance estimation in evolution-
ary algorithms,� Genetic And Evolutionary Computa-
tion Conference, pp. 183�190, 2006.

[10] Erik Magnus Hvass Pedersen, Tuning & Simplifying
Heuristical Optimization, Ph.D. thesis, University of
Southampton, 2010.

[11] Mihaela Iunescu, Parameter Optimization of Genetic
Algorithms by Means of Evolution Strategies in a Grid
Environment, Ph.D. thesis, Johannes Kepler Universität
Linz, 2006.

[12] John Grefenstette, �Optimization of control parameters
for genetic algorithms,� IEEE Transactions on Systems,
Man, and Cybernetics, vol. 16, no. 1, pp. 122�128, 1986.

[13] D.B. Fogel, L.J. Fogel, and J.W. Atmar, �Meta-
evolutionary programming,� in Signals, Systems and
Computers. 1991, pp. 540�545, IEEE Computer Society
Press.

[14] Thomas Bäck and Hans-Paul Schwefel, �An overview
of evolutionary algorithms for parameter optimization,�
Evolutionary Computation, vol. 1, no. 1, pp. 1�23, 1993.

[15] W.A. de Landgraaf, A.E. Eiben, and V. Nannen, Pa-
rameter calibration using meta-algorithms, IEEE, 2007.

[16] J. Horn, N. Nafpliotis, and D.E. Goldberg, �A niched
pareto genetic algorithm for multiobjective optimiza-
tion,� in IEEE World Congress on Computational Intel-
ligence, 1994, pp. 82�87.

[17] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, �A
fast and elitist multiobjective genetic algorithm: NSGA-
II,� IEEE Transactions on Evolutionary Computation,
vol. 6, no. 2, pp. 182�197, 2002.

[18] A. O. Griewank, �Generalized descent for global opti-
mization,� Journal of Optimization Theory and Appli-
cations, vol. 34, pp. 11�39, 1981.


