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ABSTRACT 

Warehouses are an essential component of the supply 

chain, used for buffering the material flow, stock 

consolidation and value-added-processing. Operation 

managers typically do a good job of filling their 

warehouse but initially assigned storage locations might 

become sub-optimal over time, due to seasonal 

fluctuations in demand, short product life cycles or high 

inventory levels. Fragmented storage is a particular 

issue in order picking environments, where the optimal 

storage location of a product is not only dependent on 

its turn-over rate but also on the storage locations of 

items that frequently occur in the same picking job. In 

practice, operations managers are forced to periodically 

reorganize the warehouse to keep it operating 

efficiently. This process is generally done manually 

without any decision-support tool. In this paper we 

introduce an optimization approach that automatically 

reorganized item locations. Results are evaluated using 

a simulation model that simulates the picking and 

transport processes in the warehouse. 
 

Keywords: re-warehousing, storage location problem, 

warehouse simulation  

 

1. THE STORAGE ASSIGNMENT PROBLEM 

AND PERFORMANCE INDICATORS 

The storage assignment problem involves the placement 

of a set of items or pallets in a warehouse in such a way 

that one or more performance measures are optimal. In 

typical distribution centres travel time to retrieve an 

order has been found to be the largest component of 

labour, amounting to 50% or more of total order picking 

time according to (Tompkins et al. 1996). By contrast, 

only 10% of the total order picking time is invested in 

the actual retrieval of products from their storage 

locations. Under the assumption that picking times are 

not correlated with particular storage locations we may 

treat them as fixed costs and omit them in the evaluation 

of warehouse assignments, thereby focusing on travel 

time.  

Directly optimizing the picker travel times is 

complex, requiring a detailed warehouse layout and 

resource model (pickers, possible routes, routing 

strategy, collision detection and avoidance). Most 

approaches do therefore use an alternative, albeit 

related, objective measure. Early attempts to reduce 

travel time were for example based on the idea that fast-

moving items should be located in easily accessible 

forward pick areas. Heskett (1964) extended this simple 

policy and proposed the cube order index (COI) rule, 

which ensures that heavy or fast-moving products are 

stored in more desirable locations close to ground level. 

Modifications of the COI rule have since been 

published, which also consider inventory costs or 

zoning constraints (Malmborg 1996). In general, these 

turn-over based policies work well if the order sizes are 

small and pickers return to the shipping deck after each 

pick.  

In order picking environments a picker usually 

retrieves multiple items per order. Items that are 

frequently ordered together are said to be correlated or 

affine (Garfinkel 2005). Storing affine items close to 

each other may reduce the total travel time of the order 

pickers, although this is not guaranteed and depends on 

the picker routing. As noted by Waescher (2004) the 

fact that two items appear in the same order does not 

necessarily mean that a picker will directly proceed 

from one to the other on his route. In addition, structural 

conditions, such as narrow aisles that do not allow 

reverse back out, or large orders might require a full 

traversal of the warehouse anyway. In this case storing 

by affinity does not significantly reduce travel time but 

could on the contrary lead to congestion in certain aisles 

since it does not enforce balanced storage of fast-

moving items. 
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2. WAREHOUSE ASSIGNMENT EVALUATION  

We combine two objectives to evaluate warehouse 

assignments generated by our optimization approach. 

Products with strong affinity should be placed together 

and fast-moving objects should be placed close to the 

shipping docks. 

Prior to defining the objective function, we need to 

introduce a couple of variables. First of all, the 

warehouse definition consists of the set of storage 

locations S and a distance matrix denoting the travel 

distances (or efforts) between pairs of storage locations.  

 

S = set of all storage locations sk ; 0 < k <= m (1) 

 where m  = |S| 

dist(sk, sl) = distance between storage location  (2) 

 sk and sl 

In addition to the storage locations that can hold 

products, at least one special origin locations must be 

defined that denotes the shipping dock. In our case we 

employ a return routing strategy, were aisles are always 

entered and left from the front (cf. Section 4: 

Warehouse Simulation Model). Therefore we have 

defined an origin location in the lower left corner of 

each warehouse rack, ensuring that fast-moving objects 

are placed in more favorable locations close to the 

ground and near the front of an aisle.  

The distance is a scalar value that can be assigned 

in different ways. For a rough estimate one might pick 

the linear distance between storage locations. For a 

more realistic approximation one could sum up the total 

travel distance, taking transport paths and perhaps even 

height differences into account. For our scenario we 

used a travel time estimate. First we split the travel 

distances into sub-movements such as aisle switch, 

forward/backward movement of the truck and fork up-

down/left-right movement. Then we weighted the travel 

distances with empirically determined average travel 

velocities for the different movement types and summed 

up the resulting values to obtain an estimate for the 

required travel time between locations.  

Usually, the storage locations and the distance 

matrix need to be determined only once for a given 

warehouse and can later be re-used for different 

problem instances.  

Conversely, the following parameters are likely to 

change over time and need to be retrieved from the 

enterprise resource planning or warehouse management 

system. Most importantly, the set P lists all products 

that are present in a particular assignment. 

 

P = set of all products pi; 0 < i <= n where n = |P| (3) 

For each product pi we need to know the total number 

of picking orders orders(pi) in which the product 

occurs. Similarly, the affinity matrix stores how often 

two products are ordered together. Finally, the current 

warehouse assignment defines how many products pi 

are stored at location sk. The set of locations L(pi) 

stores all locations of a particular product.  

 

orders(pi) = number of orders in which pi occurs (4) 

affinity(pi, pj) = number of orders in which  (5) 

 products pi and pj occur together 

quantity(pi, sk) = number of packing units of  (6) 

 product pi stored at location sk 

L(pi) = set of all Ss  where quantity(pi, s) > 0  (7) 

The entities defined in 3-7 can be calculated from order 

picking histories and the current warehouse assignment. 

We can now define the objective functions in equation 8 

and 9.  

 

totalPickFrequencyScore =   (8) 
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The totalPickFrequencyScore, as defined in Equation 8, 

ensures that frequently picked products are placed in 

more favorable storage locations near the ground and 

the aisle entries. For each product it detects all current 

Figure 1: Example for the calculation of the quality of a simple assignment, consisting of a rack where two products p1 and 

p2 are stored in three locations s1, s2 and s3. In addition, the location origin denotes the lower left corner of the rack. The 

stored quantity per location and product is one. All other storage locations are empty. The two quality measures, as 

defined in Equation 8 and 9, amount to totalPickFrequencyScore = 30.5 and totalPartAffinityScore =  6.  



storage locations L(pi), calculates their distance to the 

origin and weighs each distance with the expected 

number of picks given the number of previous 

orders(pi). The picks are uniformly distributed on all 

storage locations, independent of the actual stored 

quantities in the different locations.  

  

totalPartAffinityScore =     (9) 
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The totalPartAffinityScore takes all pairs of 

products pi and pk, and retrieves all respective storage 

locations L(pi) and L(pj) from the current assignment. 

The distance between each resulting storage location 

pair is calculated and weighted with the part affinity 

divided by the number of location pairs |L(pi)|* |L(pk)|. 

The term reduces to zero for products with no part 

affinity, therefore the calculation can be sped up by only 

looking at products pk that have an affinity greater than 

zero with a given product pi.  

The resulting multi-objective evaluation function 

for assignments is computed as weighted sum of the 

two objective functions given in Equation 8 and 9 such 

that 

 

quality = α * totalPickFrequencyScore              (10) 

            + β * totalPartAffinityScore. 

 

Figure 1 demonstrates how to calculate the quality of a 

small sample assignment with the given objective 

function.  

As already mentioned the assessment of storage 

configurations via the proposed objective function alone 

might - in some cases - lead to solutions that are far 

from optimal in practice. We believe that a realistic 

evaluation of routing and storage strategies needs to 

incorporate dynamic aspects such as fluctuating travel 

and picking times, floor space utilization in the docking 

area, resource constraints (e.g. a limited number of 

pallets) or potential congestion situations when forklifts 

wish to access the same aisles simultaneously. We 

therefore employ a complementary simulation model 

for the evaluation of storage configurations as described 

in Section 4.  

 

3. HEURISTICLAB 

HeuristicLab (http://dev.heuristiclab.com) is a 

framework for heuristic and evolutionary optimization 

which is based on the Microsoft .NET framework. One 

core design goal of HeuristicLab was to shift the 

application of optimization strategies from an 

implementation point of view to a modeling point of 

view. In HeuristicLab algorithms are modeled by 

combining several generic parts using a graphical user 

interface. Similarly, problems are abstracted such that 

they make use of a certain representation and provide a 

fitness function as well as import parsers and graphical 

representations. The underlying representation, also 

called the encoding of a solution, provides manipulation 

operators such as crossover or mutation. All 

optimization runs were conducted with HeuristicLab 

and solutions were evaluated via the objective function 

given in Section 2. The best solutions were 

subsequently validated via simulation, to get a more 

realistic assessment of the quality of the generated 

assignments.  

 

4. WAREHOUSE SIMULATION MODEL 

We developed a simulation model in AnyLogic
TM

 6 that 

was based on a real-world high rack warehouse. Our 

project partner kindly provided enterprise data such as 

layout information, order picking histories and daily 

warehouse storage assignments. The warehouse floor 

plan was built to scale, with two fork-lift trucks for 

picking. Travel and pick time distributions were 

obtained empirically and used to parameterize the fork-

lifts. Storage assignments can be loaded into the model 

as well as a set of picking jobs that ought to be 

simulated. The model employs a return routing strategy 

for incoming orders, were aisles are always entered and 

left from the front (de Koster and Roodbergen 2007), 

and calculates and performs an optimal picking 

sequence for each order. 

The simulation model allows decision makers to 

parameterize and evaluate different warehouse 

configurations according to the various performance 

indicators, such as 

 Total travel distance: The total distance 

travelled by all pickers.  

 Fork lift blocking time: The model puts 

certain access restraints on the pickers. For 

instance, only one fork lift trunk can access 

the aisle per time. The total blocking time 

sums up the time spent waiting for an aisle to 

become free again.  

 Average order picking time: The average 

time required to complete an order, including 

travel, waiting and picking times 

All generated warehouse assignments were evaluated 

according to objective function introduced in Section 2 

and the three indicators given above.  

 

5. STORAGE LOCATION REASSIGNMENT 

The literature about re-warehousing activity is limited. 

As stated in (Garfinkel 2005) one known approach was 

introduced by (Sadiq 1993), who periodically revises 

the assignments in accordance to the variation of item 

pick frequencies over a longer time period. Similarly, 

Housseman et al. (2009) used a simulation model to 

estimate the impacts of re-warehousing in cryo-

conservation centers. In this paper we employ  

 first improvement local search and  

 simulated annealing (see Kirkpatrick 1983)  



to optimize a given initial warehouse configuration. The 

base of both improvement methods is a set of moves 

that relocate a given quantity of items to a new location. 

In particular, we implemented different move operators, 

which swap the whole content of two randomly selected 

locations. 

 Random Swap 2: Random swap of two pallets  

 Random Swap 3: Cyclic swap of three pallets  

 Attraction Move: Movement of pallets 

towards a more attractive position, meaning 

closer to affine products or – in case of a high 

turnover rate – the shipping dock 

 

Table 1: Parameters for SA 

Parameter Value 

Iterations 500,000 

Temperature 80000 

Annealing Factor 0.998 

Annealing Scheme Multiplicative 

Inner Iterations 20 

 

6. EXPERIMENTS AND RESULTS 

We conducted test runs on data from a high-rack 

warehouse with more than 7,000 storage locations. As 

already mentioned, our project partner provided 

historical order pick data, consisting of information 

about more than 10,000 products and roughly 300,000 

individual picking operations. The affinity matrix was 

calculated using this historical data set. Moreover, daily 

snapshots of the current warehouse assignment and 

planned picking orders for the day were exported from 

the warehouse management system. We used five such 

snapshots, optimized each assignment with respect to 

the objective function and subsequently evaluated the 

resulting assignments by simulating the scheduled 

picking orders. All optimization runs were conducted in 

a high performance computing environment on an 8-

core machine with 2x Intel Xeon CPU, 2.5 Ghz and 

32GB memory.  

To investigate the trade-offs between placement by 

part affinity and placement by retrieval frequency, we 

had to find a good setting for the parameters α and β in 

the objective function (cf. Section 2, Equation 10). We 

first sampled the Pareto-optimal set with first improving 

neighborhood search and simulating annealing. We 

fixed β = 1 and conducted tests for α {1, 2, 3, …  20, 

30, 40, 50, 60 70, 80, 90, 100}. We found that setting α 

= 2 achieved a good trade-off between the two 

objectives for the given warehouse. The 

parameterization must of course be adapted for other 

warehouses, but in this paper all test runs were 

conducted with these settings. The result tables list the 

individual quality values separately, to better compare 

the assignments.  
We initially employed simulated annealing with 

fairly long algorithm execution times of thirty minutes 

to five hours to get a rough estimate of the optimization 

potential. With the algorithm settings from Table 1 and 

by stochastically selecting from the three move 

operators for each move creation with equal probability 

we were able to generate assignments that improved the 

total quality, as defined by our objective function, on 

test set 1 by 32%. The optimized assignment improved 

the part affinity score by 11% and the pick frequency 

score by 40%. To illustrate the effects of the 

optimization, we implemented two visualizations for the 

inspection of assignments. The front view (cf. Figure 2) 

depicts the perspective of a worker, standing within an 

aisle and looking at one set of racks. The top view (cf. 

Figure 3) shows a bird’s eye perspective on the 

warehouse, clearly showing the different aisles. On the 

one hand the views can show the quality of the 

assignment in a heat map like display. On the other 

hand it is possible to select a particular part in the 

warehouse and only display all affine parts with their 

locations and qualities. In this case, the relative 

lightness or darkness of the locations depicts the 

weighted part affinity score. Darker locations store parts 

with higher scores than lighter locations.  

As can be seen in Figure 2, the initially scattered 

affine parts from test set 1 are tightly packed within the 

rack after optimization. Parts with higher scores (and 

therefore a probably high individual pick frequency) are 

positioned in more favorable locations towards the 

lower left edge of the row. Similarly, Figure 3 shows 

that affine parts are mostly concentrated within one 

aisle after the optimization. 

 

  
Figure 2: Set of affine parts before and after the 

optimization within one rack (so-called front view).  

 

 
Figure 3: Set of affine parts before and after the 

optimization visualized in top view.  



 

It should be noted that this is only an example, 

illustrating the effects of the optimization on the storage 

locations of one particular part and its affine parts. Also, 

the displayed result took 3 hours to generate with SA 

and led to a complete overhaul of the warehouse with 

more than 95% of the parts changing locations 

compared to the initial assignment. 

For practical purposes, shorter algorithm runtimes 

would be preferable, in particular if re-assignments 

should be carried out on demand, when resources are 

available in the warehouse. We therefore also conducted 

tests with first-improvement local search and tight 

optimization time windows of 1-3 minutes. Once again, 

all three move operators were used with equal 

probability.  

 

Table 2: Best results for tests with local search and a 

very tight optimization time window of 1-3 minutes for 

five test sets 

 

Test Set Affinity 

Score 

Frequency 

Score 

Computing 

time 

1 -1% -11% 

1-3 min 

2 -1% -13% 

3 -1% -8% 

4 -3% -19% 

5 -3% -18% 

 

As can be seen in Table 2, improving the placement of 

parts according to their pick frequency is much easier 

than grouping affine parts close together. This is not 

surprising, since the latter requires more moves and 

products that are picked with a wide variety of other 

products may experience conflicting “pulls” (e.g. via 

the attraction move) towards multiple areas in the 

warehouse.  

Finally, to assess the impact on picker travel 

distance and order picking time, we conducted 

simulation runs for the test sets to compare the initial 

and generated assignments.  In particular, we wished to 

investigate if assignments with better qualities would 

also lead to improved picker travel times and if the 

ratios were similar. We simulated five replications per 

assignment to account for stochastic variability. Due to 

the employed deterministic picker routing algorithm the 

travelled distance per assignment is the same across 

replications. 

We exemplarily list and discuss the simulation 

results for test set 1 and the best SA test run in Table 3 

and 4. While the generated assignment achieves better 

results on all three performance indicators, the 

improvement is not as great as one might hope for, 

given a 40% improvement on the objective function. 

The total travel distance of the two forklifts could be 

reduced by 1.85 km or about 7%. Blocking time, which 

we knew to be an issue beforehand, could also be 

improved by 18% and the average order picking time 

dropped by 8.5 minutes or roughly 35%. It should be 

noted, though, that results fluctuate a lot between 

replications, since the underlying distribution from 

which we estimate the picking times has a large 

variance. We are currently discussing these results with 

the warehouse operator and evaluating possible 

improvements to the simulation model. However, even 

our initial and very basic tests show that the 

employment of simulation is crucial for a more realistic 

estimate of the impacts of different assignments on 

warehouse logistics.  

 

Table 3: Simulation results for the original warehouse 

assignment from test set 1.  

 

Replication 

number 

Travel 

distance 

[km] 

Blocking 

time [min] 

Average order 

picking time 

[min] 

1 

18.91 

255.17 24.96 

2 239.42 28.92 

3 232.08 23.76 

4 252.5 24.84 

5 210.7 18.3 

 

Table 4: Simulation results for the warehouse 

assignment from test set 1 after optimization with SA.  

 

Replication 

number 

Travel 

distance 

[km] 

Blocking 

time [min] 

Average order 

picking time 

[min] 

1 

17.06 

208.08 18.54 

2 209.08 15.36 

3 194 15.66 

4 146.83 12.78 

5 217.17 15.84 

 

7. CONCLUSIONS AND FUTURE WORK 

The optimization approach presented in this paper is 

still a work in progress. The main innovations of our 

approach lie in the custom objective function and the 

employment of simulation for a realistic evaluation of 

the generated assignments. So far, we have acquired and 

pre-processed the required data, specified a generic 

model for the warehouse assignment problem, created 

and parameterized a simulation model for the evaluation 

of results, implemented solution manipulation operators 

and generated preliminary results with two standard 

algorithms. Our future research will focus on the 

following aspects: 

First of all more exhaustive tests need to be 

conducted, also employing a more diverse set of 

heuristic optimization techniques, such as tabu search,  

evolution strategy and force-driven algorithms. This 

will be a major research focus in the second stage of our 

project.   

Secondly, even short optimization runs such as 

those conducted with local search perform a large 

number of moves and thus re-arrange a multitude of 

parts. Such extensive rearrangements, an approach that 

we call re-warehousing, can block the fork lift truck for 

a couple of hours at least, is costly and might therefore 



not be possible too frequently. Conversely, it should be 

easier to conduct a small number of cleanup tasks in 

idle slots between order picking or at the end of shifts. 

The idea behind this healing approach is that iteratively 

improving the placement of parts will lead to a good 

total warehouse assignment. We plan to conduct a study 

on the relative merits and efforts involved in re-

warehousing vs. healing and derive recommendations 

for different warehouse types.  

Finally, the company data used in this study is 

copyrighted and proprietary. We do however plan to 

publish a properly pre-processed and masked data set in 

the near future to allow other researchers to reproduce 

our results. In addition, we wish to apply our approach 

to different warehouses to investigate scaling, 

applicability and variance.  
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