ChemLog SWOT-Analysis

Strengths, Weaknesses, Opportunities and Threats of Chemical Logistics in Central and Eastern Europe

www.chemlog.info
Imprint

ChemLog SWOT - Analysis
Strengths, Weaknesses, Opportunities and Threats of Chemical Logistics in Central and Eastern Europe

Authors:
Association of the Chemical Industry Czech Republic
Association of Chemical and Pharmaceutical Industry of Slovak Republic
FH OÖ Research and Development GmbH / Logistikum Competence Centre
isw Institute for Structural Policy and Economic Development
Ministry for Economy and Labour of Saxony-Anhalt
Ministry for Regional Development and Transport Saxony-Anhalt
Polish Chamber of Chemical Industry
Province Novara
Regional Development Holding, Budapest
Usti Region

It has to be adverted that though elaborateness neither the authors nor the editor take responsibility for the correctness of the underlying data and statements in the study.
This project is implemented through the CENTRAL EUROPE Programme co-financed by the ERDF
www.central2013.eu
Any liability for the content of this publication lies with the authors. The European Commission is not responsible for any use that may be made of the information contained herein.

Editor:
FH OÖ Forschungs & Entwicklungs GmbH
Logistikum / Competence Center for Logistics and Enterprise Networks, 2008
Wehrgrabengasse 1-3, A-4400 Steyr
www.logistikum.at
Steyr 2009
Table of content

1 Project ChemLog – Chemical Logistic Cooperation in Central and Eastern Europe 4
 1.1 Preface and acknowledgments ... 4
 1.2 Project Idea ... 5
 1.3 Project Partners .. 5
 1.4 Project Objectives ... 6
 1.5 Project Activities ... 7

2 SWOT Analysis – Strengths, weaknesses, opportunities and threats .. 8
 2.1 Structure of SWOT Analysis .. 8
 2.2 Target group of SWOT Analysis .. 10
 2.3 Methodological approach of SWOT Analysis .. 10
 2.4 Structure of SWOT Analysis .. 12

3 Strengths and Weaknesses of the Chemical Industry
 and Chemical Logistics in CEE .. 13
 3.1 Strengths and weaknesses in procurement ... 13
 3.2 Strengths and weaknesses in warehousing of raw materials, semi-finished and finished products ... 14
 3.3 Strengths and weaknesses in production logistics .. 15
 3.4 Strengths and weaknesses in distribution and transport .. 15
 3.5 Strengths and weaknesses in planning and controlling .. 16
 3.6 Strengths and weaknesses in order processing .. 17
 3.7 Strengths and weaknesses in information logistics .. 17

4 Opportunities and Threats of the Chemical Industry and
 Chemical Logistics in CEE .. 18
 4.1 Economic trends ... 18
 4.2 Sociocultural trends ... 20
 4.3 Technological trends .. 21
 4.4 Environment and Energy ... 22
 4.5 Politics and innovation ... 23
 4.6 Transport infrastructure .. 24
 4.7 Safety and Security .. 29

5 Need for future actions and improvements - Conclusion ... 30
 5.1 Need for future actions and improvements – in terms of politics for transportation and infrastructure ... 30
 5.3 Need for future actions and improvements – for chemical logistics in CEE 35
 5.4 Need for future actions and improvements – from the ecological point of view 37

6 Outlook to Mainstreaming and Implementation of Project Results ... 38

7 Literature .. 40
1 Project ChemLog – Chemical Logistic Cooperation in Central and Eastern Europe

1.1 Preface and acknowledgments

The Chemical Industry in CEE is mostly based on Russian raw materials. The use of roads and railways together with the development of pipeline systems for the connection of raw material locations and production locations all play an important role in this context. As a result of historic decisions the important chemical locations in Poland, the Czech Republic, Slovakia, Austria, Hungary, Novara and East Germany are due to historic decisions taken inland about locations with no direct access to sea harbours. Therefore, these locations have competitive disadvantages, especially in relation to the higher costs compared to chemical locations in Western Europe that have excellent access to sea harbours and connected waterways. The existing cost disadvantages resulting from the traditional location and missing West-East connections are an important development barrier for the Chemical Industry in CEE. These competitive disadvantages are further enhanced by the disproportionate use of road transport and the resulting lower use of low cost railways.

In many regions, especially in Eastern Europe, road traffic has reached its capacity limits. Further deficits are a barrier to the development of the chemical clusters: Capacities and the expansion of transport infrastructure are not sufficiently oriented towards the needs.

There is a lack of harmonisation of technical, administrative and social regulations and laws in Europe. Furthermore insufficient European coordination of transport related decisions on the part of the countries concerned remains a problem. There are shortcomings in the organisation of transport, especially in the conception of intermodal terminals and the further development of technologies for the transfer of goods between different transport media. Insufficient priority is given to freight traffic compared to passenger traffic. Finally, there is no collective approach to share and find logistic solutions in the relevant regions and countries.

The target group of the project consists of chemical enterprises, logistic providers, national and regional politicians, national and regional ministries for transport and economic affairs, Regional Development Agencies, Chambers of Commerce and Research Institutions. There are about 2500 Chemical enterprises and 200 enterprises in the area of logistic providers specialised in chemicals in the partner regions. Furthermore, there are about 50 Chambers of Commerce and 50 Research Institutes. The chemical enterprises and logistic providers are interested in improving framework conditions to transport their products and feedstock in Central Europe in relation to reduced costs, increased speed, better reliability and flexibility as well as higher safety. The logistic providers are interested in improved logistics and transport of chemical goods. The national and regional administration and chamber of commerce want to improve chemical logistics to strengthen competitiveness of the economy.

Transnational cooperation is vital for the achievement of the expected results due to the complexity and transnational dimension of chemical logistics in Central Europe. The Chemical Industry itself is one of the most globalized industrial branches in Europe, 50 to 60% of its products are exported. Furthermore, the largest parts of the feedstocks are transported to the production locations, mostly from Russia. Therefore the Chemical Industry is
responsible for a large share of transnational freight transport in Central Europe.
The project aims to work on the different dimensions of logistics e.g. rail, waterway, intermodal transport, pipelines and harmonisation of regulations. The biggest barriers in these areas result from different framework conditions, policies and regulations in the partner countries. The lack of cooperation at transnational level in the area of transnational logistics is the main reason for many deficits in the area. The project specifically wants to improve this situation. Moreover the division of Europe during the Cold War has not enabled the development of functioning transport networks similar to those that have emerged in Western Europe in the past decades. Therefore the enlargement of the European Union is still a specific challenge for chemical logistics.

In order to develop solutions to the above mentioned problems it is necessary to bring together the relevant stakeholders from the partner countries in order to initiate a transnational cooperation process. This process will allow the transnational transfer of experience and mutual learning. Furthermore Feasibility Studies for specific transnational logistic projects will be developed under participation from partners of different countries. Finally the development of the joint strategy and action plan is an undertaking that can only be agreed by partners from the relevant countries in order to agree on future priorities for infrastructure planning.

1.2 Project Idea

The project idea has been developed by the partners during the discussion of the High Level Group for the Competitiveness of the Chemical Industry in Europe, which united high-level representatives from the European Commission, Member States and Industry. The European Chemical Regions Network, which represents the joint interest of 19 chemical regions from 9 countries participate in the High Level Group and has proposed a more intensive cooperation in the area of logistics in CEE, which has found wide support by the High Level Group Members. In order to further develop the project idea a workshop was organised on 20.02.08 in Magdeburg with participants from Germany, Poland, the Czech Republic and the European Commission, which have agreed on the main objectives and activities of the projects and a successful project application as been developed. The project is financed by the INTERREG IVB Central Europe Programme and was approved on 25.09.2008. The project duration is 3 years from November 2008 to October 2011 with an overall budget of 2.2 Mio. Euro, whereas 1.7 Mio. Euro are financed by the European Regional Development Fund (ERDF).

1.3 Project Partners

The partnership consists of different entities, which fulfil specific functions:
- Regional and Local authorities, such as ministries for economic affairs or transport, municipalities or regional development agencies,
- Research and Cluster organisations,
- Interested Groups and Associations

This composition of partnership allows an efficient division of work and ensures a good implementation of project activities. The public regional and local authorities have the responsibility for infrastructure planning, they provide sound framework conditions and offer substantial funding resources in the area. They are especially working in view of joint strategy development and action planning.
Project ChemLog

- Lead Partner: Ministry for Economy and Labour of Saxony-Anhalt (DE)
- Ministry for Regional Development and Transport Saxony-Anhalt (DE)
- isw Institute for Structural Policy and Economic Development (DE),
- Polish Chamber of Chemical Industry (PL)
- Association of the Chemical Industry Czech Republic, (CZ)
- Association of Chemical and Pharmaceutical Industry of Slovak Republic (SK)
- Usti Region (CZ),
- Province Novara (IT),
- FH OÖ Research and Development GmbH / Logistikum Competence Centre, Steyr (AT),
- Regional Development Holding, Budapest (HU)

The mediator function between the political and industrial environment. They are specifically focussing their efforts in the analysis and exchange of experience. The identification and transfer of best-practice will be mainly supported by these entities. Furthermore they actively contribute to the mainstreaming and evaluation of the project.

The interest organisations have the direct contact to the enterprises, one of the most important target groups of the project. They will ensure the integration of the needs and interests of the enterprises in the project activities and disseminate the results to a broad range of relevant stakeholders. Furthermore the development of the feasibility studies is an important activity for them.

Altogether the partners are committed to establishing an intensive cooperation to improve the situation for chemical logistics and provide concrete examples and recommendations for actions in the future. The combination of the specific strengths and joint interests of the partners will ensure a successful outcome of the project.

The relevant stakeholders and key actors are chemical enterprises and logistic providers and chambers of commerce from industry side, the national and regional ministries and development agencies from political side and research institutions from academia. The industry stakeholders will be involved in the project in the framework of the regional stakeholder meetings. Furthermore project partners such as the Chemical Industry Association will ensure involvement from industry. The political level will also be actively involved in the project activities, by participation in meetings or development of the action plan. Especially the advisory group meeting will be used to involve the political level (national and EU) in the mainstreaming of results. The analysis and exchange of experience activities will be implemented under the involvement of relevant research institutions. The different types of project partners will use their existing links to the relevant stakeholders for the project.

Transnational cooperation is vital for the achievement of the expected results due to the complexity and transnational dimension of the chemical logistics in Central Europe, as the biggest barriers in these areas result from different framework conditions, policies and regulations in the partner countries.

1.4 Project Objectives

The project ChemLog has the following general objectives:

1. to strengthen territorial cohesion in Central Europe by developing a Central and Eastern European Chemical Logistics Network as a platform for the joint discussion and cooperation for chemistry related transport issues,
2. to promote the internal integration by improving chemical logistics in Central Europe and
3. to strengthen the competitiveness of the chemical cluster in better connecting raw material and production locations and better accessing the growth markets in CE Europe.

The specific objectives are:

1. Strengthening rail and waterway transport for chemical goods in comparison to road in order to improve safety and environmental protection, to reduce costs and increase speed and flexibility of chemical logistics.
2. Support the development of logistic centres for intermodal transport and their integration in infrastructure planning.
3. Facilitate the connection of pipelines for an effective Central and Eastern European Chemical Logistics Network.
4. Initiate transnational know-how and technology transfer for the development of transport and guidance systems focused in the West-East direction.
5. Supporting the realisation of Trans-European Traffic routes and harmonisation of regulations and coordinated planning of infrastructure and the use of Structural Funds.

The project will strengthen the territorial cohesion in Central Europe by developing a Central and Eastern European Chemical Logistics Network, which will improve the framework conditions for economic growth and regional development. A modern and safe infrastructure is also the precondition for new investments, creation of employment and increased productivity. Especially in regions lagging behind and in the new member states improved infrastructure will give impulses for growth and convergence and improve life quality. The project will promote the internal integration in Central Europe by improving chemical logistics. The countries of Central Europe are especially disadvantaged due to existing barriers and missing connections alongside the former border between Eastern and Western Europe. The project will especially work on the further development of the Transeuropean Transport Networks with specific focus on the transnational projects in the partner countries. The project will strengthen the competitiveness of the Chemical Industry in Central Europe, which is a major economic industry with strong impact on innovation and employment in the partner countries. Furthermore the Chemical Industry has a strong influence on many other industries alongside the value-chain. A better connection between the chemical locations is a precondition for the sustainable development of the industry in the long-run, especially taking into account the increased competition from Asia and the Far East. The know-how and technology transfer will help to increase the innovation capacity of the partner regions in the area of chemical logistics. Therefore the project will actively contribute to the Lisbon Agenda.

1.5 Project Activities

Besides Management in work package 1, Dissemination activities will be implemented in work package 2. Work package 3 will focus in the first year on the analysis of the current situation and identification of needs and best practice. Work package 4 will work on the preparation of investment, by implementing 4 feasibility studies of infrastructure project with transnational relevance. The final package will focus on the strategy development and the mainstreaming of the project result. The major activities such as the establishment of the Central and Eastern European Chemical Logistics Network and the Joint Strategy and Action Plan will be implemented in the last year of the operation.
2 SWOT Analysis – Strengths, weaknesses, opportunities and threats

The SWOT Analysis is – together with the Best Practice Study, which will be finalized within the next project steps – the major output of work package 3 – Analysis and Exchange of Experience and the main input for the upcoming work packages such as Investment Preparation and Strategy Development.

The main objectives of work package 3 are to analyse the current situation of the Chemical Industry and respectively of chemical logistics in the partner regions as well as to identify strengths, weaknesses, opportunities and threats and to identify needs for further actions as a basis for the implementation of four feasibility studies in work package 4. These will be done by a uniform method used by all project partners according to the SWOT concept. The next step is to identify and analyse deeply best-practice solutions for exchange of experience and to provide the results for the work package “Investment Preparation”. All partners will contribute to these activities.

<table>
<thead>
<tr>
<th>SWOT Analysis</th>
<th>Best Practice Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ Analyse the current situation of Chemical Industry in each partner region</td>
<td>▪ Deeper analysis of best practice solutions in the area of chemical logistics</td>
</tr>
<tr>
<td>▪ Identify strengths, weaknesses, opportunities and threats of chemical</td>
<td>▪ Discussion of potential for the transfer of experience as basis for mutual learning</td>
</tr>
<tr>
<td>logistics in the partner regions as basis for exchange of experience</td>
<td>▪ Show opportunities for further cooperation</td>
</tr>
<tr>
<td>▪ Develop a description of chemical logistics to have a common understanding</td>
<td></td>
</tr>
<tr>
<td>of current situation</td>
<td></td>
</tr>
<tr>
<td>▪ Identify regional needs and future potential areas for cooperation and</td>
<td></td>
</tr>
<tr>
<td>implementation of feasibility studies</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: SWOT Analysis and Best Practice Study

2.1 Structure of SWOT Analysis

The SWOT Analysis is a holistic concept to analyse a topic regarding its strengths, weaknesses, opportunities and threats. Strengths and weaknesses are understood as so called internal, supporting or hindering factor, which can be directly influenced by the company itself. Opportunities and threats are external, supporting or hindering factors or trends, whereas the company is not able to influence them directly.
For the purpose of the project the SWOT concept was implemented in practice as follows: In order to generate the information about strengths and weaknesses of chemical companies in general and in terms of chemical logistics in CEE, individual expert interviews were organized. To gain facts about global trends, external opportunities and risks the projects partners used Regional Stakeholder Meetings as Expert Workshops. Furthermore experts were asked about improvements and measures and about the identification of best practice cases. The idea behind the separation of individual interviews and workshops was that generally internal and company-specific strengths and weaknesses could be better discussed within single interviews, whereas global trends, opportunities and threats are not company-specific and can be discussed in a bigger group.

In fact each partner region carried out a SWOT analysis. A uniform template and structure was provided by the Logistikum in order to guarantee comparability:

1. Introduction to region / country
2. Description of domestic Chemical Industry
3. Description of transport infrastructure
 a. Intermodal
 b. Pipeline
 c. Road
 d. Railway
 e. Inland waterway
4. Internal strengths and weakness of the Chemical Industry from the logistic point of view in CEE
5. External opportunities and threats of the Chemical Industry from the logistic point of view in CEE
2.2 Target group of SWOT Analysis

The target group of SWOT Analysis consists of the Chemical Industry itself but also of macro and micro economic experts and stakeholders with relevance for the Chemical Industry:

<table>
<thead>
<tr>
<th>Chemical Industry</th>
<th>Service Sector (with relevance for CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacture of basic chemicals</td>
<td>Logistic service providers</td>
</tr>
<tr>
<td>Manufacture of pesticides and other agrochemical products</td>
<td>Industry associations</td>
</tr>
<tr>
<td>Manufacture of pharmaceuticals, medicinal chemicals and botanical products</td>
<td>Political decision-makers in the field of</td>
</tr>
<tr>
<td>Manufacture of soap and detergents, cleaning and polishing preparations, perfumes and cosmetic and hygiene products</td>
<td>- Economy</td>
</tr>
<tr>
<td>Manufacture of other chemical products</td>
<td>- Politics and innovation</td>
</tr>
<tr>
<td>Manufacture of man-made fibres</td>
<td>- Transportation</td>
</tr>
<tr>
<td>Manufacture of rubber products</td>
<td>- Technology</td>
</tr>
<tr>
<td>Manufacture of plastic products</td>
<td>- Environment and energy</td>
</tr>
</tbody>
</table>

Table 2: Target group of SWOT analysis

2.3 Methodological approach of SWOT Analysis

In order to guarantee an efficient and standardized return of facts, figures and information

- a guideline for single interviews
- a template or design for expert workshops and
- a template for the SWOT analysis itself were provided to the project partners.

<table>
<thead>
<tr>
<th>Opportunities and Threats</th>
<th>Strengths and Weaknesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economic trends</td>
<td>Procurement</td>
</tr>
<tr>
<td>Sociocultural trends</td>
<td>Warehousing of raw materials, semi-finished and finished products</td>
</tr>
<tr>
<td>Technological trends</td>
<td>Production logistics</td>
</tr>
<tr>
<td>Environment and energy</td>
<td>Distribution and transport</td>
</tr>
<tr>
<td>Politics and innovation</td>
<td>Planning and controlling</td>
</tr>
<tr>
<td>Transport infrastructure</td>
<td>Order Processing</td>
</tr>
<tr>
<td>- Railway, Waterway, Road, Intermodal, Pipeline</td>
<td>Information logistics</td>
</tr>
<tr>
<td>Safety and Security</td>
<td></td>
</tr>
<tr>
<td>Industry sector and competition</td>
<td></td>
</tr>
<tr>
<td>- Suppliers</td>
<td></td>
</tr>
<tr>
<td>- Customers</td>
<td></td>
</tr>
<tr>
<td>- Access to the market / market entry</td>
<td></td>
</tr>
<tr>
<td>- Substitutes</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Methodological approach
Expert Workshops
It was recommended either to use the Regional Stakeholder Meetings or individual organised expert workshops in order to gain information about global trends, opportunities and risks of the Chemical Industry and chemical logistics. It was proposed that several group discussions with a maximum of 10 experts per workshop should be arranged. These workshops were held between April and March 2009 in all partner regions. The project partners received a workshop design in advance with a preselection of spheres of influence and their factors on the discussed topic to ensure a productive and effective discussion. For opportunities and threats 8 spheres of influence (view table 3) with 74 factors were predefined to provide a guideline for group discussion. For each factor the experts had to evaluate whether it poses an opportunity or threat, further, to scale the degree of influence from -3 to +3. Additionally, the content of the discussions were documented.

Single Expert Interviews
Strengths and weaknesses – due to concealment reasons – were mainly held as single expert interviews. For that purpose an interview guideline (see attachment) which at the same time can be used as a questionnaire was provided for the project partners to organise either interviews or a postal questioning.
2.4 Structure of SWOT Analysis

The structure of the SWOT Analysis, issued by each partner region, is based on a standardized model. After giving a brief overview of the partner region, the domestic Chemical Industry, logistics, and the transportation infrastructure is described in detail. In particular, the regional SWOT Analysis includes the results of the expert interviews and workshops as well as needs and measures for future actions and improvements. However, in this consolidated version of the SWOT-Analysis, there are only the “pillars” and the “roof” of the below house described. Regarding the information including region and country respectively, the chemical industry itself, transport infrastructure and the chemical logistics, these topics are mentioned in the individual SWOT-Analysis of each project partner, which can be downloaded at the ChemLog homepage.¹

¹Download at:
http://www.chemlog.info/impressum.html
3 Strengths and Weaknesses of the Chemical Industry and Chemical Logistics in CEE

Which strengths and weaknesses can be influenced internally by the company regarding chemical logistics in CEE?

3.1 Strengths and weaknesses in procurement

Procurement lead time for raw material and intermediates
Regarding the procurement of raw materials the suppliers are generally located globally. Chemical sites in CEE have to face a disadvantageous situation as important materials and products are supplied from overseas markets. Numerous chemical companies rely on just-in-time delivery of raw materials as especially within the commodity sector high volumes of raw materials are supplied, and companies try to avoid huge inventory. There are various but unreliable raw material producers in Eastern Europe. Due to obsolete sites and technologies just-in-time delivery of raw materials is not possible under those circumstances. In order to prevent deviations of stored raw materials, prices are often agreed monthly instead of quarterly. Transport is handled on the basis of contracts or on spot markets for the modes waterway, road and railway.

The suppliers’ availability, reliability and flexibility
Experts claim that the delivery time of suppliers from emerging markets is rather unpredictable because the quality of products and packaging is often not sufficient. This leads to problematic handling of goods especially in terms of unloading of goods posing major safety and security risks. The supplies of natural gas and crude petroleum are dependent on Russian federation and transit via Ukraine. Big companies transport supplies by pipeline and railway. Small commodities are usually transported by road. The import of supplies by rail from the Ukraine and the Russian Federation is influenced by broad-gauge track with a necessity of reloading or boogie shifting. The general procurement policy is to guarantee at least two suppliers for products with critical availability. For non-time-critical products (in particular basic chemicals) – under the condition that warehousing capacities are sufficient – the procurement is dependent on price and lead time. Sources of supply in those cases can be countries in Eastern Europe or South / East Asia.

Collaborative demand planning
For this factor it is essential to distinguish whether companies are part of a corporate group or not. Either the procurement strategy is agreed nationally or internationally with headquarters or in best cases companies use collaborative demand planning with their supplier. Opinion-formers consider
collaboration as a necessary factor during the planning period.

Supplier assessment and management
The evaluation of suppliers in order to benchmark them by the means of standardized key performance indicators was qualified as one of the strengths. Suppliers’ assessment with regular revisions especially for critical products is extremely important from the companies’ point of view and a set part of supplier management.

Communication to suppliers
Communication channels operate well. The ways and directions of the communication channels are clearly defined. The companies of the chemical sector consider it as one of the ir strengths.

Quality of product and packaging
The products are well-packed and precisely labelled; they can be clearly identified. Therefore this category was evaluated as one of their strengths.

Terms of payment and delivery
Payments prove to be settled according to the required proceedings. The delivery takes place subsequently to the event of ordering. Payment deadlines are kept. This category was qualified as strength.

3.2 Strengths and weaknesses in warehousing of raw materials, semi-finished and finished products

It is the experts’ opinion, that the share of raw materials in production costs is rather high. Furthermore raw materials are often stored over long periods, due to long delivery times and unreliable suppliers. Within the Chemical Industry products and materials are produced on stock (made-to-stock) or on the basis of sales forecasts. Only few companies choose make-to-order strategies. Experts from chemical companies claim limited inventory capacities for raw materials, semi-finished and finished products. Furthermore product-specific characteristics and requirements limit the inventory time. In Eastern Europe, warehousing facilities are available although in most cases adjustments are necessary, own investments have to be placed and the qualification of staff has to be improved. Nevertheless companies try to hold an optimal inventory and safety-stock level, this means they try to maintain the balance between the risk of running out of stock and high inventory costs.

Sufficient experience with functional warehouse outsourcing is missing as the majority of companies have their own warehousing facilities or have consignment stocks with their suppliers. Consignment stores for raw and packaging material increase the flexibility and reduce costs for the producing company. The supplier can develop a more intensive connection with the producing company. In this respect the selection of qualified and reliable enterprises (e.g. SQAS certification) is very important.

Nevertheless companies claim a lack of specialized logistic service providers having the required experience for warehousing and handling of chemical goods. Warehouse infrastructures are adequate, as far as capacity and safety are concerned. Nowadays, there are strong tendencies to minimize warehouse stocks and utilize the raw materials and intermediates for production by a “just in time” approach.

Many chemical enterprises developed innovative solutions for stock management and control in order to contribute to optimizing logistic processes.
3.3 Strengths and weaknesses in production logistics

The Chemical Industry in CEE has a good competitive position due to its’ strong integration, optimised and stable structures of the production processes. High investments and a large-scale restructuring process in the framework of the privatisation after the reunification have created the basis for a highly modern and competitive Chemical Industry. This is especially true within Central Europe, which has grown above average in the past years. The establishment and the further development of clusters and networks alongside the value added chain are additional location advantages for the Chemical Industry.

Chemical companies report stable production processes with extremely low scrap rates. In general duration, production processes for finished products last about 2 days. In most of the chemical companies production is organised in three-shift models and in some cases also on weekends. The utilization of machines and production lines is good owing to highly automated processes. Basic chemicals have to face longer durations for production changes (set-ups and cleaning of reactors). Nevertheless, some experts see high potential in the reduction of damage within the production processes and in decreasing the time for production change-over. Production planning is supported by IT-Tools and major objectives are to maximize delivery reliability and productivity. Furthermore companies try to minimize set-up and cleaning times. Flexibility in the production process – often caused by short-term changes in customer demand – is limited within the Chemical Industry.

3.4 Strengths and weaknesses in distribution and transport

Highly different product-specifics generate special requirements for distribution. Even within sectors of the Chemical Industry (e.g. commodities), customer demands vary regarding costs and quality of distribution logistics (e.g. fertilizer: high cost pressure, acceptable quality, small time slots for delivery or melamine: high quality demands, exact meeting of delivery dates or urea: high quality demand, not as time-critical as melamine). Chemical companies try to shift volume from road to railway; in particular commodities are suited for railway transportation (bulk loads).

Multimodal transport is difficult due to insufficient transloading facilities and railway connections. Transshipment of cargo demands special equipment, but efficiency depends on volumes and on regularity. This can only be achieved by generating synergies and cooperation with partners. Therefore the last mile and the low utilization still remain as major problems. Additionally, interoperability between rail systems in West- and East-Europe, bureaucratic barriers, lack of quality of equipment and inflexibility as well as an inadequate terminal structure for intermodal transport hinder companies from shifting volume to railway. Experts think railway transportation is challenged by limited availability of wagons, which are sometimes in a poor condition and badly cleaned. Furthermore some equipment or wagons (e.g. NH3-wagons) is unsafe in handling. Some chemical locations established public terminals for intermodal transport either directly on site or within their vicinity. These terminals are specialised in the handling of chemical goods and play a central role in the improvement of chemical logistics.

In some Eastern European countries road transportation is influenced by low quality and inefficiency of the road infrastructure as well as by non-harmonized country-specific administrative and social regulations (e.g. digital...
tachometer). Many companies remark that the customer defines the mode of transport according to their requirements in terms of flexibility. Safety and Security when loading goods at chemical sites in Eastern Europe is challenging for companies as sometime staff do not wear personal safety equipment and cargo safety measures are missing.

Transportation and freight management is often outsourced. Transport to CEE countries is usually organised via international freight carriers, whereas transport within CEE countries is often carried out by local carriers. The main problem is the lack of utilities for cargo safety and insufficient use of personal protective equipment when transloading cargo in CEE countries. In general, the equipment and the condition of the freight vehicles are inadequate.

Coordination and communication with logistic service providers in CEE countries is sometimes difficult due to language barriers and the missing harmonization of social standards (e.g. driving hours). In addition, experts partly claim the non-availability of people with excellent logistic background in terms of collaboration with logistic service providers in CEE. In general experts see high potential in the development and improvement of the road infrastructure especially in those CEE countries which recently joined the European Union.

Inland waterway is the most important mode of transportation in terms of high quantities and bulk cargo – especially for commodities. The availability and effectiveness of the Danube waterway is hardly predictable due to external influences like flood, low water and icing. Therefore this mode of transportation is not suitable for time critical cargo. Furthermore, modern unloading facilities within ports in CEE countries are missing (e.g. roofed terminals). In terms of hazardous goods, special transports are necessary although appropriate vessels are not always available. Low outbound volumes signify low utilization, which makes the inland waterway less competitive.

Selected chemical companies have developed extensive pipeline networks in order to ensure cost effective and safe transport of raw and intermediate materials. Pipelines are also an active contribution to environmental protection through avoidance of transport on road and railway.

3.5 Strengths and weaknesses in planning and controlling

It is the experts’ view that accuracy and reliability in demand and supply planning or forecasting with customers is rarely realizable. Even the reliability of data depends both on the suppliers and the customers. The enterprises have problems with an insufficient reliability of sales forecasts, which form the basis for production planning. The sector is affected by the necessity to act and react flexibly to plan production, distribution, procurement of raw materials and inventory levels. The planning of inventory levels depends on the supply and demand planning: the more detailed and reliable, the better the planning of inventory levels. The accuracy and flexibility in production and delivery planning is well-developed, these are documented strengths. Close cooperation between chemical enterprises and logistic service providers has lead to a clear improvement of performance of the chemical logistics by active support of the processes. There are a lot of best-practice solutions in this area. The chemical logistics is in a constant process of optimisation.
3.6 Strengths and weaknesses in order processing

Generally, order processing is supported by software applications that make processes standardized, stable and transparent. The majority of interviewed companies see their strengths in short order-cycle-time as well as in standardized and constant order processing.

3.7 Strengths and weaknesses in information logistics

Production Planning Systems (PPS) are used for production planning in order to maximize productivity and adherence to delivery schedules as well as to minimize cleaning and set-up times. In many companies, software is in use to manage the supply chain. Enterprise Resource Planning (ERP) and Material Requirement Planning (MRP) Systems are in action for order processing, procurement, production, inventory and transport.
4 Opportunities and Threats of the Chemical Industry and Chemical Logistics in CEE

In order to gain representative results for opportunities and threats expert workshops were organized during the Regional Stakeholder Meetings. The main objective was to collect as much information as possible about external opportunities which it is not possible to influence in relation to chemical logistics in CEE. Representatives of the Chemical Industry, logistic service providers as well as experts from other stakeholder groups attended the workshops. The results are summarized in the following chapters.

4.1 Economic trends

Current economic development
Despite the current financial and economic crisis, the expected positive long term economic development and the increasing freight transport volumes all constitute an opportunity for the growth and the further development of most of the chemical enterprises. This can be an important contribution to the stabilisation of markets and the improvement of customer satisfaction. Nevertheless, the present economic crisis serves as a threat to many chemical and logistic companies both world-wide and on the regional level. Especially small and medium sized companies find the current economic situation hardly challenging and are struggling to survive. Especially logistic service providers and freight carriers are suffering from the decline in freight volume. Some experts expect a further intensification of competition after an ongoing reduction in customer demand. Other companies are more optimistic in terms of the economic crisis and expect an increase in consumption and investment both on a global and regional level.

The current economic situation is extremely difficult for the Chemical Industry, but should rather be regarded as an opportunity and not as a threat. Experts’ believe and experience in the sectors dealing with bulk, fine and speciality chemicals shows that German companies view the economic crisis more critically than Austrian chemical companies.

Internationalization of selling and sourcing markets
Access to international selling and sourcing markets is a key success factor and vital for the Chemical Industry. Especially for new member states import and exports are now mainly concentrated on EU markets and access to markets is therefore easier. The majority of experts feel that the internationalization of sourcing markets poses an opportunity due to a wider access to sources, whereas the opinions in terms of selling markets differentiate as companies fear increasing competitions possibly from cheap Asian products. Consequently this leads to an enlargement of the supply chain as well as to longer transportation distances. The
sourcing of energy is done mainly with regional suppliers, but only with limitations. Many experts think that the internationalization of sourcing markets is a huge chance for the logistic sector. From the sales point of view, the internationalization of selling markets leads to higher product variety.

An increasing replacement of production sites has been noticed within the last years. However, experts are not sure how long this trend will continue in the same intensity as labour costs in Eastern Europe are expected to increase further on. In the Far East labour costs are low as is often the quality of chemical products. Nevertheless, experts predict that quality will adapt to the European level within the next few years. Quality awareness remains a question of mentality.

Intensified competition and global cost pressure
Representatives of the Chemical Industry think that intensified competition, and as a consequence higher cost pressure, is seen both as an opportunity and as a threat. The competition is vital for innovations and new distribution canals. Although the situation poses a risk as European chemical companies have a comparative price and feedstock disadvantage in certain products and their derivatives (e.g. Olefins). Enterprises are also facing an upcoming wave of additional petrochemical capacities, especially in the Middle East. In terms of logistics, intensified competition results in similar basic conditions. Some experts notice an augmenting shake-out or market adjustment which can be partly traced back to the economic crisis. Nevertheless a clear market position plays an important role nowadays.

Individualization of products and services
Individualization of products and services is a must especially within the fine chemical sector and leads possibly to market segmentation. For the basic chemicals sector, individualization is considered as a neutral factor although special markets demand individualized products and services. For the discussed sector, this factor can be seen as an opportunity as long as the customers are prepared to pay for the additional services. From the logistic point of view small and medium companies see a high potential in value-added services which is not fully tapped yet, especially in the field of infrastructure. The customer is the driving force and often value-added services in the field of logistics are seen as a must.

Adjustment of Eastern European wage-level to Central Europe’s level
Labour costs in the EU Chemical Industry are high in a world-wide context with rather high differences within the EU 27, although ULC levels in the EU are competitive with most countries. The challenge is to hand those higher costs on to the customer. In terms of logistics, companies benefit from the lower wage-level in Eastern Europe as in future, the trend referred to, will probably result in higher logistic costs. For example: current rail prices are advantageous which can be lead back to a low wage-level in Eastern Europe. On the other hand, logistic experts possibly expect an opportunity, especially for freight management, due to the pullback of business to Central and Western European Countries. From the Eastern European countries or, respectively, from the new member states’ point of view, experts treat that development as a threat due to worsening competition conditions.

Change of image of the Chemical Industry
Associations of the different countries have started campaigns in order to make chemical companies more open, especially in terms of the environment, climate protection as well as regarding sustainability, safety and security. In general, the focus is put on restructuring and redesign of the communication policy and public relations. The main objective is to “re-experience” the Chemical Industry in the public opinion, as “living Chemical Industry”.

Trend towards smaller production lots
In the course of this trend, the dose rates are increasing significantly in order to reduce the

2 ULC – Unit Labor Costs, Productivity and International Competitiveness, RuG 2005.
production lots, especially within the pharmaceutical industry. Thereby a more valuable effect as well as higher requirements in terms of quality are achieved.

Partners with competences in R&D
Customers tend towards partners with well-developed strengths in the field of Research and Development in order to acquire and keep strategic partnerships. During time periods of economic boom this step is easier as strategic cooperations in R&D come along with high investments.

4.2 Sociocultural trends

Demographic change in CEE
The opinions regarding the influence of the demographic change in CEE are divided as 50% see that development neutrally and the other part of the group expects a disadvantageous impact on the Chemical Industry.

Availability of human resources in the field of logistics
In Central and Western European countries the availability of human resources in the field of logistics is still a risky factor as a lack of employees both in the operative and strategic field is expected. It is also increasingly difficult to find qualified staff in the field of chemistry. Some companies have the possibility to stay optimistic, as they have a well-performing internal education system. Representatives of logistics and forwarding companies also note that approximately 10 years ago there was a significant drain of Eastern European logistics specialists to Western and Central European countries, as these countries had been suffering from a lack of highly qualified logistics staff. Nowadays the situation is almost stable, although some experts claim that graduates from technical universities still leave Eastern European countries for the West or Overseas. There is low student interest in studying technical subjects (chemistry, logistics, electrical and mechanical engineering).

Think global, act global
Centralization of decision makers within corporate groups implies a threat; therefore companies tend to form smaller decision-making units. Companies benefit from a large integrated European market and from continued strategic restructuring efforts to adopt for flexibility, which enables high international orientation and a global network to consumers.

Skills of employees in the field of logistics (professional, social and intercultural)
Most of the Eastern European experts add that the educational standard, and in particular the skills of employees in the field of logistics, is a major opportunity in CEE. Furthermore, companies refer to well-developed connections and relationships to educational institutions, universities as well as to research and development institutes. Although intercultural competence is an important factor, it should not be overestimated. The accessibility to professional trainings and their standardization was classified as an opportunity in the market segments. Again experts stressed the lack of qualified staff specialized in the logistics of hazardous chemicals, therefore they defined this factor as a potential threat. Furthermore, some experts claim the increasing fluctuation of employees is possibly leading to a low level of skills and experience in chemical logistics.

Public image of the Chemical Industry
The public image of the Chemical Industry is evaluated by chemical producers as a big barrier, because people are still afraid of hazardous chemicals in their neighbourhood. Therefore there have been a lot of measures and actions in order to change the image of the Chemical Industry i (more “green”, responsible care, sustainability etc.); experts see an opportunity to position the Chemical Industry as a sustainable and secure workplace. For other
experts this trend is not visible and has minimal degree of influence.

Changes in values, intercultural competences
In a heterogeneous cultural context like CEE, a smooth co-operation, based on the consolidation of common values, may meet with difficulties. In general it can be stated that the co-operation with the partners to the west of Eastern European countries suffers from certain deficiencies. A slight discordance of interests has been emerging with Germany and Austria and Turkey.

Transition to flexible working hours
The transition to flexible working hours is seen as an opportunity.

4.3 Technological trends

Technology as core competence
Competence in R&D as well as in production and process technology are observed as a huge opportunity for the Chemical Industry. Customer-specific applications come to the fore. Strong innovation efforts will generate new growth clusters: biotechnology, renewable feedstock, efficient energy use, health and new materials (e.g. nanomaterials) which have the potential to solve upcoming societal mega challenges.

Information and Communication Technologies
It is the experts’ opinion that, Information and Communication Technologies definitively come along with the opportunity to realize standardization along the whole supply chain, whereas the potential cannot yet be fully tapped as long as interfaces do not work properly. Financial investments are not efficient in an economic context. Standardization is also a topic for accompanying shipping documents in terms of language and symbols. Furthermore, from the logistic point of view, Information and Communication Technologies can be a competitive value-added service. To take infrastructure into consideration is an important aspect in terms of Information and Communication Technologies (e.g. integration of terminals).

Innovations in transport, cargo handling and warehousing
Innovations in transportation, cargo handling and warehousing should lead to standardization of infrastructure, vehicles and handling technologies resulting in cost reductions and increase of quality and safety. Securing uniform types of vehicles with fixed platform gates is seen as a huge opportunity especially in relation to cargo. Innovations are further awaited for terminal infrastructure, warehousing and goods handling in order to achieve process stability as well as reduce leakage (video control at cross-docking-areas and especially mentioned by the pharmaceutical industry). This trend is seen as a competitive factor. However in order to benefit from that competitive advantage it is necessary that technological developments in the field of logistics are implemented by each party in the supply chain (e.g. monitoring during transport of dangerous materials, tracking and tracing of shipments, mechanical breakdown of transport modes during the transport of explosives, etc.).

Screening of technologies
It is highly important for chemical companies to develop a technology-portfolio for production and process technologies. In that context the employees play a major role in creating customer-oriented solutions.
4.4 Environment and Energy

Climate change especially Carbon Dioxide Emissions
This factor poses a real threat for the Chemical Industry and results in a distortion of competition. Furthermore the real impact and the prospective possibilities of chemical companies to react on that development cannot be determined. At the same time the climate change provides numerous opportunities for companies and new potential as well as opportunities to shape collaborations.

Availability of non-renewable energy sources
Due to the fact that non-renewable energy sources are the main resources and raw materials for the Chemical Industry this development is a threatening challenge. Gas and oil have to be imported because Europe is neither a strong gas nor oil producer. Numerous European countries are energetically (crude petroleum and natural gas) dependent on single suppliers. The diversification and securing of supply is crucial for a competitive domestic Chemical Industry. Other countries (Middle East, Russia, India, Brazil, etc.) have preferential access to these energy sources. There is a huge threat of closing down or capacity changes of production units in Europe due to a lack of access to energy feedstocks.

Availability to renewable energy sources
Having no significant influence in chemical logistics, the availability of renewable energy sources poses an opportunity for sectors within the Chemical Industry focusing on the exploitation and manufacture of for example biomass, biogas, bio-lubricants, agro-materials, bio-polymers or bio-fuels etc. Although in order to force availability and use of renewable energy sources it is essential to enhance research and development activities. This is part of the responsibility of political decision-makers within the European Union and the Member State.

Internalising external costs
The increase in road transport of cargo has decoupled from economic growth for the last years. Only a small part of the external costs for infrastructure is paid for by the road traffic. The costs will augment disproportionately with the increase of road traffic. Only 56% of all external costs are actually covered by congestion charges. This - combined with the fact that there are congestion charges for railway too - leads to a distortion of competition of means of transportation. Doubtless for the logistics internalising external costs will result in a disadvantageous development.

Energy costs
Currently experts do not see any threat caused by energy costs. Due to the expected sharp increases in energy expenses, this development is a major risk for the Chemical Industry, as an energy-intensive industry sector. Primarily, this factor is a danger for the Chemical Industry, but at the same time as far as possible the sector can detect and benefit from new alternatives. Experts state that energy markets have a “quasi” oligopolistic organization leading to high and non-transparent energy cost for consumers and industry.

A further possibility for chemical companies to reduce energy costs is to enter into collaborations. The development of the diesel price and toll fees is an important cost factor for chemical logistics. Increasing prices causes an additional cost burden. National and European regulations, which lead to higher prices and fees compared to the global market, are a specific competitive disadvantage for European chemical enterprises. The discrimination and lack of equality in the treatment of foreigners for the collection of toll fees is a special problem in Russia.
4.5 Politics and innovation

International harmonization of transport and traffic related laws and regulations
Especially within international corporate groups the cross-border harmonization of transport - and traffic-related laws and regulations within CEE is a huge topic also in terms of equal competitive opportunities. In particular this concern affects regulations for hazardous goods, safety and security issues. From the Eastern European Experts’ point of view this development is seen as a threat. Different laws and regulations may hamper the smooth implementation of the necessary procedures applied in logistics and have an impact on the competitiveness of a business location. Furthermore, special attention should be paid to the regulatory environment of the Eastern European countries near the Schengen borders.
In the harmonisation and standardisation process the chemical enterprises have the opportunity to participate actively in the definition of joint standards and the transfer of knowledge. In a dialogue process joint efforts for the coordination of transport routes can be implemented.
An insufficient harmonisation of technical and administrative standards for the transport of chemicals generates increased costs and time for the handling of cross-border transports. Different social standards lead to a distortion of competition.

Prioritization of traffic infrastructure issues within the political programs
Experts remark partially neutral and positive comments on the prioritization of traffic infrastructure projects within the political programs as traffic increases with economic development. Focus should put be on internationally coordinated projects, for instance the motorway connection Austria – Slovakia. Considering all country-specific interests and requirements is a challenge. According to the opinions of Eastern European experts the prioritization of traffic infrastructure in the political programs can be interpreted as an opportunity. Evidence for this is provided by the fact that a remarkable amount of EU funds are devoted to this priority. Hence this factor was evaluated by the respondents as one of the most outstanding opportunities. However, it was interpreted as a serious drawback that policy-makers may reorientate the developmental targets and withdraw money from traffic infrastructure with reference to the decline of the available resources resulting from the economic crisis.

Financing of traffic infrastructure projects
Given the fact that the projects are sufficiently financed, the prevailing policy on financial subsidies in the field of traffic and transportation including infrastructure is identified as an opportunity. The majority of the respondents stressed again the fact that the amount of the available EU resources for infrastructure development may be shrunken in the context of the restrictive economic measures. This could result in a major set-back for the sector. For the moment there are sufficient resources for fulfilling the developmental targets. However unified efforts should be made in order to sustain these financial conditions in the future. On the one hand experts describe the lack of logistic competence within the ministry of transport, party political influence as well as the insufficient transparency and inefficient use of the existing infrastructure. On the other hand there could be opportunities for improvement within the political system (e.g. PPP Financing).

Infrastructure employment costs (costs of usage)
Congestion charges are vital for financing infrastructure projects, although for the competitiveness of the Austrian business location in an international context, this development is disadvantageous.
Cross-border capacity planning of traffic infrastructure across the carriers
For the majority of the experts involved this parameter is seen as a huge opportunity, but it demands an international bundling of freight volume. Nevertheless some workshop participants clearly define the cross-border capacity planning of traffic infrastructure as a source of threats as the result of the emerging contradictions in this matter in the field of transportation in particular (e.g. definition of parity, difficulties caused by the provisions of the Schengen system (e.g. multi-hour queues at the Schengen border). Transregional integration of territorial development plans is difficult and slow.

Policy on financial subsidies in the field of traffic and transportation
When discussing the policy on financial subsidies in the field of traffic and transportation, the experts did not strike an agreement as to whether this poses a threat or a chance. Experts expect a reasonable use of financial subsidies especially for traffic infrastructure and the carriers rail and inland waterways. The support of commercial zones without railway siding is hardly criticized, as the opportunity to move to alternative means of transport is prevented. For the dedication of financial subsidies a superior authority is requested. Some experts think that the competition should be regulated by itself.

Public acceptance of infrastructure projects
The factor of public acceptance of infrastructure projects was evaluated as threatening since any kind of infrastructure project can be suspended even by a spontaneous initiative and be prolonged as the result of incidental social resistance (e.g. representatives of Green Politics, associations for the protection of the environment).

Prioritization of passenger traffic
The protection of passenger traffic is evaluated as a source of an indirect threat in the context of logistics due to the tendency to protect passenger traffic as opposed to the transport.

Integration of land-use planning into the policy of traffic infrastructure
According to the results of the polls, the majority of the questioned stakeholders do not consider the factor as relevant.

4.6 Transport infrastructure

Railway
In general, experts expect railway to become a more competitive mode of transport in the future as fuel prices and road tolls will probably rise and generate higher costs of road transport. The Chemical Industry itself is highly interested in shifting volumes, especially hazardous cargo, from road to railway, while increasing the quality level of railway transport.

Location and structure of the railway system
The majority of experts agree on an insufficient and suboptimal situation of the railway infrastructure in CEE. There is no budget for investments into the railway network, which has been even reduced for the last years. Especially in the southern part of Eastern Europe the conditions are dramatic as the state railroad nearly went bankrupt. The equipment is, in terms of quality and availability, beyond contempt and the price policy is disastrous so that further shifting of freight volume to road is done. Furthermore, for the whole region the experts claim inadequate interfaces, lack of integration of road into the planning of railway terminals, no mutual intermodal project activities between road and rail, obsolete equipment, suboptimal schedules and in total an inefficient process of transportation by rail. Experts suppose a potential in making the existing railway network more efficient through the optimal design of handling nodes. In addition, the liberalization of the railway transport is seen as a very positive development in terms of service quality and prices due to
intensified competition. In the southern part of Europe there is a growing shortage of side tracks connecting the industrial sites: in spite of this, track dismantling goes on, compelling industries to choose the road. The plan is to build a broad-gauge track and to expand the cross-border points between neighbouring countries, though high fees may lead to a low level of utilization. Furthermore, the conditions to enable the north/south capacity from Poland to Hungary to be increased are necessary.

The Hungarian and Polish experts remark that the railway network in their countries are well-developed and of high density. Poland benefits from the transit position near pan-European corridors. The domestic network is well developed, although the cross-border railway network has to be improved for example between Russia, Poland, and Slovakia as well as towards the southern part of Hungary. The existing broad-gauge rail connection with Russia and the Commonwealth of Independent States are the advantage for the Polish rail network, ensuring fast and safe transport of goods to eastern markets.

Although many experts feel that the railway structure itself is well-located, the condition and quality of the railway track infrastructure is suboptimal and there is a differences in classes between Eastern and Western European countries (most railway tracks are class C - 20 tonnes weight per axle - instead of class D – 22.5 tonnes weight per axle - obligatory standard in Western European countries). Furthermore due to these class-differences, rail equipment has to be adapted (class C railway tracks are not permitted as modern rail tank cars – according to the RID, TSI, etc.)

The inadequate railway infrastructure in CEE is a big barrier for chemical transport in this region. A large share of the chemical goods are transported on the roads, because the railway can only be used to a limited extend. But the capacity limits of the roads are already exceeded. A special weakness of the railway transport is the reloading at the border stations. The closing of identified railway infrastructure gaps in Central Germany is delayed due to time consuming procedures for planning and realisation. An inadequate coordination between the neighbouring states leads to further delays and discontinuity in the transport routes.

Capacity, efficiency and location of terminals

The location of railway terminals is currently evaluated as being insufficient and inadequate for the Chemical Industry or respectively for chemical logistics. Within the Central and Eastern European countries there is a deficit in terms of quantity, quality and accessibility. Capacity and efficiency of terminals is underdeveloped and the equipment is obsolete or not adequate for the purposes of the Chemical Industry.

The views regarding the capacity and efficiency of terminals differ: most experts do not think that the terminals themselves are bottlenecks within the logistic processes. A minority feels that the capacity and efficiency of terminals are a threat for chemical logistics in CEE.

Availability and capacity of railway wagons

Troubles in availability arise especially at ad-hoc or individual transports, whereas the longer the planning horizon, the better the availability (in particular for block trains). Tank wagons are mainly booked at private railway transport operators. The quality differs, depending on the origin country. The sourcing of special equipment or wagons is problematic. So the experts’ opinions about the mentioned factor ranged from an evaluation of neutral to one of seeing it as a risk.

Access to terminals

General this factor poses a risk but with low influence. The Austrian ports of Vienna and Krems are especially mentioned as infrastructural bottlenecks. Krems for instance does not have an access for hazardous goods.

State-owned railway systems

Private railway transport operators are well-situated in CEE and are quite competitive due sometimes to non-comprehensible public price policy. Although the price policy of the state-
owned railway system is seen as a threat due to the quasi-monopoly and non-transparent situation, numerous experts think that the market is self-regulating and that there will be a further shake-out in the future. Especially logistic service providers benefit from a liberalized market of railway operators. Although the state-owned railway systems provide a certain stability, the experts expect a further liberalization and privatization process of railway market and PPP investments in the railway sector.

Interoperability – International standards
A main problem of railway transportation in CEE is that rail systems are not compatible, meaning that there are different types of tracks, country-specific security regulations and isolated systems. In general there is a lack of harmonization of administrative, technical and social standards. Experts feel that in some cases interoperable systems are created to protect own structures and to keep a proportion of power. Harmonization is expected and a huge opportunity for all parties within the supply chain. The incompatibility of railway networks and the different tracks within Western and Eastern Europe are a special problem for chemical enterprises. An additional reloading causes higher costs, a big loss of time and higher safety risks.

Multimodality
Experts evaluate a well-developed and accepted basic railway infrastructure with the potential for improvement within the processes themselves. Due to restructuring of the railway network the last mile is lengthened.

Bureaucracy in customs clearance (RID SGMS)
Complex customs clearance and partially different interpretation of regulations by the custom authorities are a handicap for cross-border chemical transport. Under these conditions, contract logistics is almost not possible and interferences have a negative impact on customer satisfaction.

Waterway

Location and structure of the waterway network
Generally, the network of inland waterway is located advantageously and fits Pan – European corridor, although in some partner regions it is limited to one or two main waterways. Nevertheless, in the long run, the waterway appears as a highly competitive mode of transportation for the Chemical Industry, especially for bulk cargo, under the condition that the capacity and efficiency is guaranteed. In some harbours, rail tracks do not reach the docks, making intermodality difficult. The Central European Chemical Industry has a location disadvantage due to the inadequate access to waterways and the overseas ports. Therefore the connection to the international commodity flows is more complicated and high-priced. Hence, the inland transport via railway and road plays a more important role. Due to the congestion of ports in the Baltic and Black Sea, these ports can only be used for chemical transport in a limited way. Additionally an adequate port in the Mediterranean Sea is missing. Therefore chemical goods have to be transported via the cost intensive inland routes.

Location of inland ports
Ports in CEE are well-located and strategically well-positioned with a high density of ports although often private ports cannot be used by third parties.

Capacity and efficiency of waterway
In order to use waterway transportation efficiently, it is essential to improve the navigability by addressing ice, flood and low water problems and to eliminate shoals. The conditions for inland navigations are weather-dependent and therefore unstable. The Danube is navigable only from March to May with the exception of the time of floods and at low tide. Due to natural regions, for instance alongside the Danube, these projects are only partly realizable and therefore keeping the status-quo poses a threat due to the ongoing dependency on exogenous factors. For the port of Constanta it is planned to establish a container line with
pre- and on-carriage via the Danube additionally to full-container loads. Furthermore there is a lack of pairing between imports and exports. Additionally legal differences and barriers hinder the shifting of more volume to that alternative mode of transportation.

Access to ports
The opinions concerning whether the access to ports is a chance or a threat differ greatly. Linz (Austria) was mentioned as a negative example due to the lack of connections to the traffic and transport infrastructure. In some cases ports and terminals are closed on a weekend, which poses a significant problem.

Availability and capacity of water vessels
The current equipment of the water vessels is obsolete and there is a lack of reinvestment and expansion.

Road

Location and structure of the road network
Generally the infrastructure of road transportation is improvable in terms of quality and quantity. Although experts of Eastern European partner regions admit that the location and structure of the road networks is highly centralized, as opposed to a more synergetic and more favourable decentralized network structure. The factor was identified as a source of threats. Poland with it’s strategically advantageous transit position near pan-European corridors (I, II, III, VI) benefits from a high density of roads. Experts stress the need to enhance safety in terms of transportation of hazardous goods and to expand suburban road rings. In Central Europe a modern and capable infrastructure has been developed. Especially the connection of chemical enterprises to the motorway network is superior.

Capacity and efficiency of trunk roads and motorways
This factor is seen neither as chance nor as a threat. Experts see opportunities for expansion, the intelligent control of traffic (e.g. to abolish the ban on driving at night and on public holidays) in order to regulate the density of traffic, lower congestion charges within determined time frames to dislocate the traffic. Experts from Eastern European countries claim that the capacity and efficiency of motorways are not satisfactory due to the poor quality of the road infrastructure.

Development of increase in road toll
Different systems and evaluation methods in CEE in terms of road toll lead to an imbalance in international competition. Furthermore transport is shifted to minor roads in order to avoid road tolls. Several experts think that an increase in road tolls is positive on condition that the money is used for infrastructure investments. On the other hand road tolls could lead to higher efficiency in logistics, e.g. shorter distances, shorter delivery time, etc.

Interoperability - International standards
The degree of the application of and compliance with the international standards is satisfying. The appropriate initiatives have already been launched for interoperability. Therefore the factor was evaluated by the polled companies as an opportunity. Harmonized social legislation, maximum allowed dimensions and weights of vehicles for international transport make physical logistic processes more efficient. However there is still a lack of harmonization in terms of tunnels between Central, Western and Eastern European countries: in connection with the transport of hazardous goods, the present tunnels do not fulfil the requirements of the ADR agreement. In addition the transport of dangerous goods is banned on several segments of international roads (“E”) with a negative impact on logistics. A lack of truck parking facilities makes it difficult to fulfil requirements of social legislation.

Intermodal

Location, structure and capacity of intermodal nodes
The majority of chemical producers expect intermodal transport to constitute an opportunity to improve logistics and lower
transport costs, higher safety and less damages of cargo. However they indicate the necessity of enlarging intermodal nodes and terminals as presently they are rarely dedicated to the complex requirements of the Chemical Industry, especially in terms of handling dangerous goods. Additionally neither the present network of tank cleaning stations is sufficient, nor are they integrated in the planning procedures for newly built terminals. The majority of intermodal terminals are oriented on sea transports in order to arrange the hinterland transports, pre-carriages and on-carriages coming from the maritime harbours of Hamburg, Bremerhaven, Rotterdam and Koper.

Generally big terminals at strategic important nodes exist, although there is a lack of decentralized terminals throughout the area. The handling technologies are indeed well-developed in the bigger terminals, but coverage of decentralized regions is quite difficult due to insufficient compatibility and inflexibility of system components. Furthermore there is a lack of comprehensive national and international concepts. Handling technology across all carriers requires high investments in order to develop sophisticated and adequate logistic terminals. In general experts claim that the political procedure of planning, coordination and control of the development of intermodal nodes is not transparent and is inefficient as far as the requirements of the companies are concerned: for the Chemical Industry intermodal centres outside of urban areas are required to handle and store chemical goods safely.

At the moment there is no well developed structure for intermodal terminals in Eastern Europe. This leads to loss of efficiency of logistic processes for the combined transport of railway and road.

Pipeline

Location and structure of the pipeline network
Generally the as-it-is situation of the pipeline network is seen as a threat, mainly due to the previously mentioned lack of well-developed structure. A pipeline network has been built in east-west directions. For the security of supplies it is necessary to also build north/south connections. There are numerous pipeline projects planned and ongoing in Eastern Europe in order to expand the existing pipeline network and to increase the capacity:

- Ethylene pipeline Plock – Bohlen to enhance ethylene export to Germany and to focus on the possibility of the implementation of the project with other possible pipelines for propylene and LPG transmission.
- Odessa – Brody – Plock Pipeline to realize the transport of petroleum from oil pool in the Caspian Sea, mainly from Azerbaijan.
- Baltic Pipe (Skanled) to diversify gas supply to Poland from Scandinavian direction.
- Nord Stream pipeline: a gas pipeline to link Russia and the European Union via the Baltic Sea. Carrying natural gas to supply both businesses and households.
- Nabucco pipeline: represents a new gas pipeline connecting the Caspian region, Middle East and Egypt via Turkey, Bulgaria, Romania, and Hungary with Austria as well as further on to the Central and Western European gas markets. The pipeline length is approximately 3,300 km, starting at the Georgian/Turkish and/or Iranian/Turkish border respectively, leading to Baumgarten in Austria.

The inadequate pipeline network for Olefins is a big competitive disadvantage for the Central German Chemical Industry in comparison to the Western European competitors. The enterprises are forced to transport a large share of their products byroad and railway, leading to higher costs and longer transport times.

Capacity and efficiency of pipeline network
Capacities of the pipelines are evaluated as marginal but in general the situation poses neither a threat nor a chance.
4.7 Safety and Security

International Safety Standards
There is no common Emergency Response and Crisis Management System in the Eastern European States outside the European Union (especially Russia and Ukraine). This is a big threat to the safety of chemical transports. International unified Safety and Security Standards within Eastern and Western Europe pose a huge chance for the competitiveness of the Chemical Industry. The European harmonization of the legal framework of dangerous goods transport (ADR, RID, ADN, IMDG code, IATA DGR) makes the conditions for transport easier and more transparent. In addition REACH secures a standardized registration, evaluation and authorisation of chemical substances within the European Union. A further intensification of safety and security standards on an international level is expected by the experts.

The Chemical Industry in Central Europe has achieved a high safety standard in the fields of production, logistics and transport in recent years. This ensures a responsible treatment of chemical products and processes in relation to the employees, clients and environment. Initiatives such as Responsible Care and SQAS play an important role in this respect.

Tracking & Tracing of cargo
The international standards for tracking and tracing cargo were already initiated, however, the required infrastructure for GPS tracking solutions is not satisfactory, and therefore this factor was identified as a source of threats. The tracking and tracing of cargo is not only highly interesting for the customer but also in terms of hindering misuse of dangerous goods by terrorists. This is easier when the vehicle is directly marked according to ADR, RID by UN code or even by name. Even the rail tanks present a higher danger of misuse than accompanied road transport. Although the experts attached great importance to the factor for the majority of companies not dealing with logistics, the tracking and tracing of cargo is a neutral parameter. For the logistics and forwarding companies this factor represents strengths, because it represents a value-added service for customers.
5 Need for future actions and improvements - Conclusion

5.1 Need for future actions and improvements – in terms of politics for transportation and infrastructure

Better coordination of Pan-European infrastructure projects – European-wide harmonized standards for planning and controlling of traffic, transportation and infrastructure.

A better coordination of the pan-European infrastructure plans in West-East and East-West direction is necessary to agree on common priorities for the development of transport routes and to speed up the respective extension of infrastructure. The relevant stakeholders from policy, industry and administration have to be actively integrated in this coordination process in order to ensure high opportunities for implementation and the focus of planning according to the expected needs. The different political levels on a regional, national and European level have to be involved according to their specific regulatory and decision making competencies.

The ChemLog project wants to deliver a special contribution for the area of chemical logistics in this respect. At the same time the project aims to develop close cooperation with similar initiatives such as the programme of the Chamber Union Elbe Oder for the development of infrastructure, ensuring mobility and access as well as the strengthening of economic development. In general, planning horizons for cross-border traffic projects, especially for European corridors shall be speeded up significantly.

More effective distribution of EU funds

The development of cross-border infrastructure projects in CEE should be supported by a more efficient use of EU Structural Funds in interaction with other regional and national funding sources. This should contribute to the integration of the new Member States in the European Union and to strengthen competitiveness of the Central and Eastern European industry. The EU funding has special importance due to its leverage effects for the mobilisation of further public and private investments. In the framework of the use of EU funds a prioritisation of especially important infrastructure projects is necessary. Further requests are to increase political acceptance of and priority assignment to the investments required for transport infrastructure. However some experts fear major setbacks of EU funds due to the impacts of the financial and economic crisis.

Long-term, rational and sustainable-oriented transport policy

According to the experts’ opinions, traffic and transport infrastructure are of prime importance for the successful future of the Chemical Industry and especially for chemical logistics. The transport policy should focus on an integrated and long-term approach which overlaps several legislation periods. The main objective is to develop an optimized global traffic system. Challenges of the complex traffic
system can only be met through the all-embracing consideration of the relevant political sub areas and by taking the mutual consequences into account. Coherent and sustainable goals are pursued by means of an integrated transport policy rational, in order to reach the political objectives in terms of multimodality, the conditions have to be adjusted to the requirements of the economy. The target is the optimization of the quality along the whole multimodal supply chain. Depending on economic demand and geographical location, the expansion and customization of neutral bimodal and trimodal terminals shall be forced.

Institutionalization of an integrated planning of traffic infrastructure and land-use planning. Infrastructure analysis creates a transparent basis for decisions to increase efficiency and utility and/or to expand transport infrastructure. Improved assurance of areas to expand infrastructure and the transparent land-use planning procedure along high-ranking infrastructures can be ensured by mutual commitment, reconcilement of interests and long-term planning and financing reliability. Every measure to increase capacity and efficiency of infrastructure shall be coordinated both with traffic and land-use planning issues. This recommendation accompanies the request for analysis of existing, planned and needed infrastructure – a comparison of estimated demand and existing capacity – as a basis for infrastructure building projects or to improve efficiency in operating. Furthermore it is essential to standardize the legislation with the European Union within the sectors of traffic and land-use planning. For logistic purposes it is recommended to define a master plan for the territorial use for logistic purposes on national or regional level.

Efficient use of infrastructure by mileage-related charges and intelligent control

Through traffic control measures the degree of utilization of transport infrastructure can be enhanced. Further possibilities to guarantee the efficiency of traffic systems include innovative instruments for use optimization: for example pricing of the infrastructure depending on time and demand as well as intelligent traffic control depending on capacity utilization are able to optimize the degree of efficiency and to prevent or reduce congestions and time loss. This stimulates self-organizing effects.

5.2 Need for future actions and improvements – from the general logistic point of view

Globalization of logistics: act and react

The internationalization of business, for example Global Sourcing, the deployment of production and the international division of labour, causes greater distances, an increase in transport volume and in the number of transports. Under consideration of changing flows of traffic, multimodal transport solutions will gain in importance. Decelerating the vertical range of manufacturing in western industrial countries as well as displacing core competences effect an escalation of intercontinental overseas container transports. The intensified interdependencies between western industry countries and the Asian market enable novel, innovative and global logistic concepts, which are essential to deal with rising complexity in supply chain networks. Thus, the importance of the discipline of logistics and the demand for experts will increase continuously. Logistics provides potential for rationalization and consequently for reduction of inventory respectively for effective management and bundling of transports and thereby non-productive return shipments can be diminished.
Innovative network structures and logistic cooperations to achieve excellence on both sides

The concentration tendency in markets serves as an important driver for strategic competitiveness, especially in logistics. A growing number of partners and locations lead to increasing complexity within supply chain networks. Thereby the challenge is to connect actors and process in both physical and informational matching. Logistic collaborations predominantly centre on classical and basic functions: procurement and distribution. To ensure successful and sustainable vertical partnerships between logistic service providers and their customers the coverage of the whole range of services is preconditioned. Horizontal cooperation opens up new opportunities when structuring international logistics and supply chain networks and generating synergies especially in freight management, inventory management as well as in information and communication technologies.

Cooperative contacts and networks are important although not every cooperation project is profitable. Intentions to cooperate with high investment effort are only recommendable if there is a strategic benefit for the company. Investing time and resources into collaborations with customers or suppliers in order to drive innovation and differentiate services should pay-off and create value for all involved companies. In terms of logistics reduction of costs and tied-up capital on both sides by decreasing inventories, reduction of transportation costs and storage costs can be achieved. In addition more effective and efficient processes through reduction of order cycle time, lead time and increase of delivery performance create shared success. Taking out non-value added activities on both sides like the decline in errors or the reduction of production change over and additional set-ups pose objectives of a logistic cooperation. Short-term improvement projects regarding transport and distribution could be the consolidation of shipments on selected products and destinations or the increase of direct shipments in order to reduce shipping, transportation and inventory costs. To create processes of order processing and demand / supply planning more efficient better coordination between supplier and customer could lead to a diminishment of lead times and the reduction of safety stocks by collaborative forecasting. More intensive cooperation can be found in strategic product development, joint optimization of product portfolio or collaborative projects on process innovations. Trust and openness between partners is the key success factor to build reliable supply chain and logistic opportunities.

In general, alliances among small and medium sized companies in order to increase international market access and penetration as well as to facilitate scale economy shall be forced.

Companies have to face rising demand for superior logistic services

Increasing customer requirements for best-in-class logistic services and the need for continuous improvement challenge providers within globalized markets. Low fixed capital guarantees flexibility in designing transnational logistics processes. Flexible network structures are increasingly the key factor in dynamic markets. In order to ensure product availability worldwide at customer-defined conditions, enterprises are challenged to optimize their logistic concepts. This is essential to meet high requirements on flexibility due to necessary short-term reaction on customer orders, smallish order sizes and decreasing acceptance for delivery failures or delays. The challenges generate adjustments of logistics strategies and have to be orientated towards the following competitive factors:

Customer service: The modern logistic approach sees the customer as being the central point of all entrepreneurial activities. For this reason logistics is the ideal initial point for customer-binding measures and the generation of competitive advantages. Customer-oriented logistic measures do not have to be attended necessarily by customer-specific design of logistic concepts; product-supporting services can generate customer value too.
Delivery performance: Increasing quality requirements regarding delivery performance as well as the continuous optimization of logistic costs result in a conflict of objective. The demand for superior logistic services, shorter periods to response on customers’ requirements and other changes within the supply chain pose difficult challenges for companies. If product attributes and price do not differ significantly, logistic service will be the decisive purchase criterion as the customer will probably choose the product offering the best options. In this case, delivery time and reliability are the major competitive factors, crucial for the strategic success of the company.

In each field (B2B, B2C, etc.) customers require the personal and institutional perception of responsibility. This involves a new significance of the role of logistic service providers, evolving from typical task fulfillment to innovative and creative designing within a reliable partnership.

Companies are challenged by growing demand for customized logistic solutions
Standardization and Optimization within the management of customers and networks will be determining challenges for logistic processes as at the same time enterprises and logistic service providers have to meet requirements which apply specifically to a concrete problem, sector or customer (“standardized individuality”). Logistic solutions which are “ready-made” will not be viable in the future; all the more customized and efficient concepts focused on the customers’ topics represent important success factors for companies to distinguish themselves from competing companies. Furthermore the well directed application of logistics technology systems focused on customer-oriented product and service specifications will be indispensable. Complexity and cost pressure come second to robustness and security in supply chain management as concepts for stockless or low inventory (in times of uncertainty and risks in a turbulent worldwide environment) have to be reconsidered and new optima have to be defined. A return to increased European-wide networking can not be excluded.

Optimization of logistic processes as the key for cost reduction and transparency
A significantly important objective of logistics is the reduction of costs through optimization of the total system, especially of operational activities which come along with increasing market performance. The growing range of tasks would in fact lead to an increasing share of logistic costs on overall costs, although costs can be further reduced continuously by process optimization. The development of intelligent logistic solutions together with the efficient design of operational sequences enables companies to continue cost reduction. Freight costs optimization have high influence, which can be realized by optimizing the payload, re-consider the transport distance to customers in respect of transportation mode as well as optimize the freight tariff. Process monitoring and -controlling with Supply Chain Event Management Systems (SCEM) create highly competitive advantages. Outsourcing can pose a chance to optimize logistic processes too and therefore remains attractive for companies, even though motives for industry and retail are changing. Besides concentration on core competences, cost and quality aspects are focussed. Single-sourcing strategies will gain importance in this context.

Companies shall be prepared for accumulated and intensified safety regulations
Accumulated safety regulations in global trade increase the complexity for logistic processes. Examples would be: (1) long waiting periods in already overloaded entrance ports, hence resulting in (2) demurrage costs for containers, incalculable turn-around times as well as (3) incomplete information availability and (4) an additional expenditure in administration and handling. These parameters often entail unpredictable indirect costs and aspects of quality. The examination of „Worst Case“ scenarios allows the stability and operability of the supply chain to be maintained and applies, beside flexible processes and structures, as a success criterion. A substantial contribution to increasing security in supply chains is made by information and communication technologies. In container traffic technologies like RFID, GPS
and Smart Container enable consistent transmission pursuit and the identification of deviations and potential dangers. In the scope of sensor engineering the electronic seal is a possibility for the recording of incidents; the market penetration is inhibited because of the lack of standardization. The topic security in global supply chains does not only require the operational, but also the strategic viewpoint of all elements and parties, in particular the focus has to be put on the weakest link in the chain. Due to the strategic importance and in the sense of prevention it is essential to place this topic on top management level.

Rising importance of intelligent Information and Communication Technologies in the field of logistics

Technological progress opens up new ways for process innovations within the logistic field. A possible and potential solution instrument for many logistics-relevant, in particular traffic related problems, is the Information and Communications Technology (ICT). Experts assume that in the future many vehicles will be equipped with Information and Communications Technology interfaces resulting in easier implementation of additional options (e.g. improvement of the extent of utilization of the vehicles). Beyond that the future vehicles are interlaced and equipped with just-in-time (JIT) information services. Customers will call for transparency and information availability at any time in the supply chain; fulfilling those customer demands is also a competitive advantage for the companies. By the use of information and communication technologies as well as the integration of internet-based solutions, the speed and transparency can be ensured to enable cross-company planning and the control of complex logistics chains. To cope with the complexity of the supply chain and to integrate the partners and the processes of global cooperative networks and logistic operational sequences of international enterprise activities, intelligent information systems are required. In logistics research in the field of self-monitoring is needed, namely the tracking of goods during transport by systems which react in case of deviations.

Increasing requirements for the logistic staff

The global dimension of the flows of goods and information leads to higher and differentiated requirements of logistic personnel. Apart from the cross-cultural competence, special attention has to be placed on the cooperative strategy, plan and target setting. Further the technological requirements will increase notably. Handling the complexity of logistic solutions in accordance with the requirements of the economy and the customers demands both technical and general know-how as well as cross-company thinking soft skills. In future better skilled and qualified employees will operate in the logistic industry. Expert related further education in companies will become more important and amplifies the innovation in the range of logistics.

Sustainable management of logistic systems

The consequences of a growing environmental sensitivity of the population for logistics should not be underestimated: increasing aversion toward road transport could force companies to rearrange their transport-intensive delivery chains and change over to the carriers’ rail and inland waterways or sea. However, this could not be the only reason for a restructuring of logistics. Today the cost analysis concentrates only on the indirect traceable costs, for example warehousing, transport and inventory costs. Environmental costs caused by logistic activities are considered to a lesser extent. The fact that a methodical agreement for calculating the external costs is missing combined with the lack of political willingness to internalize these means that these costs cannot be assigned to logistics. In the future, the stronger environmental adjustment of the society, for example the regionalization of the transportation flows, may cause a decrease of transportation volumes. Undisputable is the fact that because of new legal requirements to reduce emissions and to save resources additional tasks will be assigned to the supply chain management. This requires detailed knowledge of the entire value chain, since each
part can directly or indirectly generate or avoid emissions. The management itself has to act in line with long-term goals and to ensure the sustainable use of the potential for success, not for short term profit maximization.

Integration of Logistics in the business strategy
Referring to the companies the above listed and discussed opportunities and threats require a strategic view of the logistic-relevant challenges.

5.3 Need for future actions and improvements
—for chemical logistics in CEE

Development of vision of a Pan-European Olefin pipeline network
The development of a vision for a pan European Olefin pipeline network in CEE is an important contribution for strengthening the competitiveness of this region especially in comparison with the highly integrated Western European chemical locations. The pipeline network can only be implemented under consideration of the interest of private enterprises in close cooperation with the political level. The pipelines can contribute to avoidance of transport especially on the congested roads and railway, to improve safety of chemical transports and to reduce costs for chemical logistics. The external effects and costs of pipelines are almost negligible and limited to the construction of the infrastructures and the energy production for the pumping installation. It is therefore obvious that a modal shift in favor of pipelines is in line with the EU Transport Policy and constitutes an excellent opportunity to integrate transport in sustainable development and promote European regional cohesion. The improvement infrastructure and diversification of gas supply projects from the Scandinavian direction (Baltic Pipe, Skanled) are of key importance for Eastern European countries.

Improvement of transportation network and systems in CEE
Extensive investments in the railway and road infrastructure in CEE are necessary for an improvement of chemical logistics. Especially the barriers at the border crossing and at identified bottlenecks should be overcome. Important transport corridors for the Chemical Industry start in Central Germany extended to the economic centres and growth markets in St. Petersburg, Moscow, Vladimir, Kiev or Odessa and furthermore to China. Furthermore in cities and agglomerations ring road section construction shall be taken into consideration as well as the improvement of transit conditions through big cities. Improvements also address the increase of safety on the road, especially in terms of hazardous goods. Present and planned road tunnels are not all classified for dangerous goods according to ADR. These issues shall be taken into consideration within planning procedures of road infrastructure. Furthermore, experts recommend installing bigger parking facilities with higher security standards, as the lack of truck parking facilities makes it difficult to fulfil requirements of social legislation. Transporting dangerous goods by road shall be more transparent, meaning on the one hand reassessing the restrictions for transport of dangerous goods on several segments of road network, on the other hand to making a draft of transit road networks for transport of hazardous goods.

The railway system is especially challenged to increase efficiency, respectively to modernize rail corridors (according to AGTC agreement) and to speed up the transition from
bureaucratic or partly monopolistic culture and mentality to a market-driven habit with the main objective to satisfy customer demands, respectively to continue the privatization and liberalization process. It is expected that this will lead to lower costs, in particular to a reduction in infrastructure management costs. The attention and investments shall not only be dedicated to passenger traffic, but also to cargo transport. In particular investments shall be made in modernization and purchasing of rolling stock with European Funds. It is important that these implement modern technologies. Additionally, it is proposed to consider big transalpine projects on European level as a unique opportunity to encourage transition from road to rail. Harmonization of technical, social and administrative regulations within rail transportation is primordial for the competitiveness of a business location. These requests are not only addressed to political decision-makers but also to private logistic operators.

The first priority to enhance inland waterway transport in CEE is to reduce bottlenecks, to create conditions for year round navigation and to develop and integrate European inland waterway transport according to the European Agreement on main Inland Waterway of international Importance (AGN). The investments in improvement of the water infrastructure shall be done according to EU standards.

Investment in terminals for intermodal transport
Investment in Terminals for intermodal transport have a special importance for the Chemical Industry. The combined use of different transport modes especially railway and road are especially important for an efficient inland chemical logistics in CEE. Intermodal Terminals have to be developed, extended and connected especially close to the economic centres alongside the important transport corridors and shall be accessible to all operators. Furthermore, an increase in efficiency of cargo handling between the transport modes and the capacities of cargo terminals has to be achieved. Intensified utilization of Information and Communication Technologies (ICT) in the area of multimodality shall be forced and financially supported technical innovations shall be launched. New intermodal or distribution centres shall be better adjusted to the requirements of the Chemical Industry, respectively in terms of storage and handling of dangerous goods. Chemical companies are recommended to consider private or PPP investments. Although a better cooperation between private and state-owned logistic operators is necessary in addition to long-term and strategic governmental support for intermodal sector. Chemical companies also recommend as well the expansion of intermodal terminals by installing value-added-services specifically for the Chemical Industry (e.g. tank cleaning).

Building alternative ports for short sea transport
The extension of alternative ports for the short sea transport is important for the Chemical Industry, to improve the access to the international transport flows and to bypass congested existing ports. The harbour interconnection both via road and railway shall be highly supported by hinterland logistic infrastructure in order to increase inland waterway transport.

Harmonization of standards
The harmonisation of standards in the technical administrative area as well as in the safety, security and social dimension are necessary to improve efficiency of chemical logistics for cross-border transports, to reduce costs, to reduce delivery times, to minimise safety risks and to ensure an equal level playing field.

Implement ER and Crisis Management Systems for the Chemical Industry
In the area of safety standards, best practice solutions from Western Europe can be transferred to CEE.
Know how transfer
Know how transfer to CEE can contribute to an improvement of chemical logistics. The experiences of the constant optimisation process of logistics can be used in closed cooperation between the relevant stakeholders to mutual advantage.

Coordination and bundling of transport
The coordination and bundling of chemical transports from one region to a selected target destination can produce synergies and cost advantages. This approach requires a high level of cooperation between the relevant chemical enterprises and logistic providers across the borders.

Solutions can only be developed and implemented in close cooperation between Enterprises / Logistic Providers and Politics and Administration at regional, national and European Level.

5.4 Need for future actions and improvements
– from the ecological point of view

Strategic orientation of the environment and energy policy regarding a sustainable development
Currently short-term orientation and a heterogeneous picture of the environment and energy policy are obvious in their controversial discussion regarding future availability of resources, implementation of climate protection programmes and the tax policy of fossil energies. Therefore it is highly recommended EU-wide harmonized environment regulations to be achieved as these constitute determining factors for a sustainable development. Environmental policies have to be internationally agreed in order to guarantee international competitiveness and have to be oriented towards the polluter-pays-principle. The provision of neutral terms of competition by European-wide harmonization of the taxation of energy considering prior performance is vital for the European Chemical Industry.

For the chemical companies the growth of a sustainable Chemical Industry shall be targeted, actively contributing to Responsible Care Programmes.

Support of research and utilization of alternative energy sources
Political decision makers shall force research, development and utilization of alternative energy sources by the allocation of financial benefits. This would lead to a diversification of the sources and possibly, as a consequence, to higher security of supplies.
6 Outlook to Mainstreaming and Implementation of Project Results

The SWOT Analysis has been the first step of the ChemLog project to identify the internal strengths and weaknesses of chemical companies and the external opportunities and threats for chemical logistics in Central Europe. On this basis the project partners have drawn general recommendations on needs for future actions and improvements, which have been described in this chapter.

These general recommendations will be used for the further development of the project activities with the objective to achieve the mainstreaming of projects results with a high practical implementation orientation for the improvement of framework conditions and the support of infrastructure development for chemical logistics in CEE.

In the next step of the work package “Analysis and Exchange of Experience” the identified strengths and weaknesses will be used to further explore best-practice solutions in chemical logistics in the partner countries (from June to November 2009). This analysis will initiate an intensive process of exchange of experience among the partners and involved stakeholders and should allow mutual learning. With this activity the project wants to facilitate deeper cooperation in the area of chemical logistics in CEE and support the transnational know-how transfer.

The general recommendations of the SWOT Analysis will be further developed and specified in the course of the project with the objective to agree on concrete recommendations for measures and projects for chemical logistics and infrastructure. The project partners should set priorities for specific measures and projects in order to focus joint efforts on promising activities with a high impact for the chemical cluster in CEE. The tangible output of this exercise will be a short list of potential concrete measures and projects with a description of the current situation, needs for improvements and a road map for implementation. This mainstreaming process will reflect the different dimensions at policy level: European, national and regional; at stakeholder level: politics, industry, Logistic Service Provider and the time span: long term, mid-term and short-term. The project will establish a Policy Advisory Group to involve the relevant stakeholders from different policy levels and industry in the mainstreaming process.

In the process of further specification of potential measures and projects, the partner will implement several feasibility studies from November 2009 until October 2010. These feasibility studies will focus on transnational infrastructure projects in the area of railway transport, intermodal transport, waterway and pipeline transport. These in-depth studies should be used to assess the feasibility of selected infrastructure projects with high potential for the Chemical Industry and contain detailed conclusions for the realisation of this infrastructure in view of investment preparation.

In the last year of the project from November 2010 to October 2011 the partners will focus their efforts on the strategy development and mainstreaming. On the basis of the mainstreaming process and the results of the feasibility studies the partners will develop a joint strategy and action plan with concrete implementation steps for the improvement of chemical logistics in CEE. This strategy and action plan will contain a list of priority infrastructure projects and measures for cooperation and a description of relevant stakeholders and partnership for implementation of these plans. Furthermore the financial framework for this will be specified in view of combining public funding from different sources (EU, national and regional) and private investments. The Strategy and Action Plan will also include a time plan with concrete implementation steps and milestones in the years after the end of the ChemLog project.
Finally the project will establish a European Network for Chemical Logistics Cooperation in CEE in order to create a supporting structure to implement the recommendations of the strategy and action plan and to continue cooperation in the area of chemical logistics after the project end.

Figure 3: ChemLog Implementation and Mainstreaming Strategy
7 Literature

- Annual Report 2005, Polish Oil and Gas Company, 2005
- Annual Report 2006, Polish Oil and Gas Company, 2006
- Annual Report, PKN ORLEN, 2007
- Barden, I. Storey, Commissioning and Maintenance of Ethylene Pipelines and Process Systems, Amsterdam, 1992
- Basic data about road network - from the ROAD DATA BANK of the SLOVAK ROAD ADMINISTRATION, the road network status as of 01.01.2008., SSC, Bratislava, 2006
- C.I.M. – Centro Interportuale merci di Novara, 1999
- Chwesiuk K.: Transport Corridors Development in the Baltic Sea Region; WSM, Szczecin
- Cohesion fund strategy – Transport sector, MDPT SR (Ministry of transport, posts and telecommunications of the Slovak Republic), Bratislava, February 2003,
– Conception of development of water transport in Slovakia, MDPT SR (Ministry of Building and Regional Development of the Slovak Republic), Bratislava, 2003
– Czech Statistic Office, annual statistic data
– Emissione dei gas serra dai trasporti - Eurostat/Apat
– Energy Politics of Poland to 2030, Warsaw, March 2009
– EU Energy & Transport in Figures, European Commission 2006
– European Energy and Transport, Trends to 2030, European Commission 06.
– EUROSTAT, Yearbook 2008
– Expert Project of the Spatial Conception of Country Developing, Warsaw, December 2008
– Futuro di Novara – Confronto per lo sviluppo di un territorio – Camera di Commercio di Novara, 2005
– Gallor A., Szyszko M.: The Meaning of Ports of Odra Valley Corridor in Baltic Sea Region; WSM, Szczecin
– Jan Kyncl, Historie dopravy na území České republiky
– Kamiński T., Rusam M.: Umowa AGN narzędziem w procesie integracji europejskich dróg wodnych śródlądowych „Gospodarka Wodna”1997, nr 7
– Kolektív autorov: Dlhodobá vízia rozvoja slovenskej spoločnosti (Long term vision of development of Slovak society), Ekonomický ústav Slovenskej akadémie vied, VEDA vydavateľstvo Slovenskej akadémie vied, Bratislava, 2008
– La politica dei trasporti nell’Unione Europea – La logistica e il container – G.Frego, Universita’ A.Avogadro, Novara, 2004
– L’industria chimica in Italia - Rapporto 2007/2008 – Federchimica
M. Wawrzonek, „Odessa – Brody – Plock Pipeline as an Part of Polish and Ukraine Strategy Partnership”, 2006

Master Plan for Rail Transport in Poland till year 2030, Ministry of Infrastructure Republic of Poland, Warsaw, Dec., 2008

Mercato dei servizi logistici e dei trasporti nell’Europa Comunitaria – M. Distinto, 2003

Mikulski: Polskie drogi wodne wobec wymogów europejskich. „Gospodarka Wodna” 2000, nr 6

Miłkowski M: Rzeka Wag i alternatywne połączenie Odra – Dunaj. „Przegląd komunikacyjny” 1995, nr 4

Ministerstwo Transportu i Gospodarki Morskiej

Ministry of Transport and Martime of Poland

Ministry of transport, annual statistic data

MTiGM, 1995, Polityka transportowa. Ministerstwo Transportu i Gospodarki Morskiej

Müller R., Zolder A.: Elaboration of a Decision Pattern for the Regulation of a Shipping Transit Lane in the Baltic Sea; Schiffahrtsinstitut Warnemünde E.V.; Warnemünde, 2003

Norme e indirizzi per l’integrazione dei sistemi di trasporto e per lo sviluppo della logistica regionale – Regione Piemonte, 2008

Osservazioni e proposte su traffici marittimi e Mediterraneo - Commissione Politiche Settoriali V, 1999

PAIZ, Polish Information and Foreign Investment Agency

Panel conguinturale Federchimica – 2005

Pavel Schreier, Zrozeni železnic v Čečách, na Moravě a ve Slezsku, Baset 2004

Piskozub A.: Rzeki w dziejach cywilizacji. Wydawnictwo Adam Marszałek. Toruń 2001r

Politics, 2008

PON Trasporti 2000-2006, Ministero delle Infrastrutture e dei Trasporti

Programme of development of railway network by 2010 and proposal of the financing of investments, MDPT SR (Ministry of Building and Regional Development of the Slovak Republic), Bratislava, December 2000
- Quadro analitico conoscitivo – Il contesto regionale/interregionale – Provincia di Novara, 2003
- Ročenka dopravy 2007, vydaná Ministerstvem dopravy, Odbor dopravní politiky a životního prostředí, RNDr. Olga Kastlová, CSc., tel. 225 131 439, e-mail olga.kastlova@mdcr.cz, distribuce a prodej Centrum dopravního výzkumu, v.v.i., Thámova 7, 180 00 Praha
- Rozporządzenie Rady ministrów z dnia 07 maja 2002r. w sprawie klasyfikacji śródlądowych dróg wodnych (Dz. U. z 2002r., nr 77, poz. 695)
 URL: http://www.fcio.at/uploads/studie_21022008_127596_DE.pdf
- Servizio Emergenza Trasporti - Anno 2007 – Federchimica
- Settore chimico in Italia – Alcuni elementi di analisi – Osservatorio per il settore chimico – Ministero per le Attivita’ Produttive, 2005
- Settore chimico in Italia – Osservazioni e proposte – CNEL, 2004
- SLOVAKIA TRANSPORT, Almanach dopravy 2007, Vydavateľstvo LUXUR, Bratislava 2007
- Środowlowe drogi wodne w Polsce (Inland Waterways in Poland) map, Krajowy Zarząd Gospodarki Wodnej / Copernicus / PPWK, Warszawa, 2007
- Statistical yearbook 2006, Statistical office of the Slovak Republic, Veda Bratislava, 2005
- Statistiche relative all’import export italiano - Ministero del Commercio Internazionale, 2007
- Statistik Austria: Leistungs- und Strukturstatistik 2000-2006
- Statistik Austria: Österreichische Verkehrsstatistik 2007, Wien 2009
 URL: http://www.statistik.at/web_de/dynamic/services/publikationen/14/publdetail?id=14&listid=14&detail=510
- Suchorzewski W., 1996. Transport Infrastructure In Poland: Main Issue Transportation Infrastructure; Environmental Challenges in Poland and Neighbouring Countries. Berlin 1996
- Suchorzewski, W., 2001. Transport Demand in Transition Economies - Trends and Possible
- ŠULGAN, M. - SOSEDOVÁ, J.- RIEVAJ, V.: Evropske dopravne koridory a Slovensko (European
- Svaz dopravy České republiky, internetový portál
- Talhofer V., Kubiček P., Svatoňová H., Brázdilová J., Šafar G., Přeprava nebezpečných látek a její modelování.
- Territorio – Fondazione Novara Sviluppo, 2005
- Trans European Olefins Pipeline Network (TEPN), Cefic, Appe, April 2004
- transport corridors and Slovakia), EDIS – vydavateľstvo Žilinskej univerzity, Žilina, 2001
- Transport policy of the Slovak Republic to 2015, Government of SR, 2005
- Trasporto merci nel settore italo-francese dell’arco alpino - Ministero delle Infrastrutture e dei Trasporti, 2005
- Trasporto merci pericolose in Piemonte - A. Robotto, 12 novembre 2008
- Wasserstrassenkarte Europa; Binnenschiffahrts – Verlag GmbH, Dammsstrasse 15-17, 47119 Duisburg 1998
- Ways of Management. ECMT Seminar, Brussels December 2002
- Woś Krzysztof: Kierunki aktywizacji działalności żeglugi śródlądowej w rejonie ujścia Odry w warunkach integracji Polski z unią Europejską. Oficyna Wydawnicza „Sadyba”. Warszawa 2005
- Zasady gospodarowania na obszarze Natura 2000 dolinach rzek. Warszawa 2005
- 3^ Rapporto S.E.T. – Anno 2007 – Federchemica
- 7th Report of the European Gas Pipeline Incident Data Group, EIGG, December 2008
- 14^ Rapporto Annuale Responsible Care 2008 - Federchemica