Publikation

Heat Treatment Process Parameter Estimation using Heuristic Optimization Algorithms

Outline:

M. Kommenda, B. Burlacu, R. Holecek, A. Gebeshuber, M. Affenzeller - Heat Treatment Process Parameter Estimation using Heuristic Optimization Algorithms - Proceedings of the 27th European Modeling and Simulation Symposium EMSS 2015, Bergeggi, Italien, 2015, pp. 222-228

Abstract:

We present an approach for estimating control parame-ters of a plasma nitriding process, so that materials with desired product qualities are created. We achieve this by solving the inverse optimization problem of finding the best combination of parameters using a real-vector opti-mization algorithm, such that multiple regression models evaluated with a concrete parameter combination predict the desired product qualities simultaneously. The results obtained on real-world data of the nitriding process demonstrate the effectiveness of the presented methodology. Out of various regression and optimization algorithms, the combination of symbolic regression for creating prediction models and covariant matrix adapta-tion evolution strategies for estimating the process pa-rameters works particularly well. We discuss the influ-ence of the concrete regression algorithm used to create the prediction models on the parameter estimations and the advantages, as well as the limitations and pitfalls of the methodology.